Metamath Proof Explorer


Theorem lmodbn0

Description: The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodbn0.b
|- B = ( Base ` W )
Assertion lmodbn0
|- ( W e. LMod -> B =/= (/) )

Proof

Step Hyp Ref Expression
1 lmodbn0.b
 |-  B = ( Base ` W )
2 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
3 1 grpbn0
 |-  ( W e. Grp -> B =/= (/) )
4 2 3 syl
 |-  ( W e. LMod -> B =/= (/) )