Step |
Hyp |
Ref |
Expression |
1 |
|
lmodfopne.t |
|- .x. = ( .sf ` W ) |
2 |
|
lmodfopne.a |
|- .+ = ( +f ` W ) |
3 |
|
lmodfopne.v |
|- V = ( Base ` W ) |
4 |
|
lmodfopne.s |
|- S = ( Scalar ` W ) |
5 |
|
lmodfopne.k |
|- K = ( Base ` S ) |
6 |
|
lmodfopne.0 |
|- .0. = ( 0g ` S ) |
7 |
|
lmodfopne.1 |
|- .1. = ( 1r ` S ) |
8 |
1 2 3 4 5 6 7
|
lmodfopnelem2 |
|- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) ) |
9 |
|
simpl |
|- ( ( .0. e. V /\ .1. e. V ) -> .0. e. V ) |
10 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
11 |
3 10
|
lmod0vcl |
|- ( W e. LMod -> ( 0g ` W ) e. V ) |
12 |
11
|
adantr |
|- ( ( W e. LMod /\ .+ = .x. ) -> ( 0g ` W ) e. V ) |
13 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
14 |
3 13 2
|
plusfval |
|- ( ( .0. e. V /\ ( 0g ` W ) e. V ) -> ( .0. .+ ( 0g ` W ) ) = ( .0. ( +g ` W ) ( 0g ` W ) ) ) |
15 |
14
|
eqcomd |
|- ( ( .0. e. V /\ ( 0g ` W ) e. V ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .+ ( 0g ` W ) ) ) |
16 |
9 12 15
|
syl2anr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .+ ( 0g ` W ) ) ) |
17 |
|
oveq |
|- ( .+ = .x. -> ( .0. .+ ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) |
18 |
17
|
ad2antlr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .+ ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) |
19 |
16 18
|
eqtrd |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) |
20 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
21 |
20
|
adantr |
|- ( ( W e. LMod /\ .+ = .x. ) -> W e. Grp ) |
22 |
3 13 10
|
grprid |
|- ( ( W e. Grp /\ .0. e. V ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = .0. ) |
23 |
21 9 22
|
syl2an |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = .0. ) |
24 |
4 5 6
|
lmod0cl |
|- ( W e. LMod -> .0. e. K ) |
25 |
24 11
|
jca |
|- ( W e. LMod -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) |
26 |
25
|
adantr |
|- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) |
27 |
26
|
adantr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) |
28 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
29 |
3 4 5 1 28
|
scafval |
|- ( ( .0. e. K /\ ( 0g ` W ) e. V ) -> ( .0. .x. ( 0g ` W ) ) = ( .0. ( .s ` W ) ( 0g ` W ) ) ) |
30 |
27 29
|
syl |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .x. ( 0g ` W ) ) = ( .0. ( .s ` W ) ( 0g ` W ) ) ) |
31 |
24
|
ancli |
|- ( W e. LMod -> ( W e. LMod /\ .0. e. K ) ) |
32 |
31
|
adantr |
|- ( ( W e. LMod /\ .+ = .x. ) -> ( W e. LMod /\ .0. e. K ) ) |
33 |
32
|
adantr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( W e. LMod /\ .0. e. K ) ) |
34 |
4 28 5 10
|
lmodvs0 |
|- ( ( W e. LMod /\ .0. e. K ) -> ( .0. ( .s ` W ) ( 0g ` W ) ) = ( 0g ` W ) ) |
35 |
33 34
|
syl |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( .s ` W ) ( 0g ` W ) ) = ( 0g ` W ) ) |
36 |
|
simpr |
|- ( ( .0. e. V /\ .1. e. V ) -> .1. e. V ) |
37 |
3 13 10
|
grprid |
|- ( ( W e. Grp /\ .1. e. V ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = .1. ) |
38 |
21 36 37
|
syl2an |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = .1. ) |
39 |
4 5 7
|
lmod1cl |
|- ( W e. LMod -> .1. e. K ) |
40 |
39
|
adantr |
|- ( ( W e. LMod /\ .+ = .x. ) -> .1. e. K ) |
41 |
3 4 5 1 28
|
scafval |
|- ( ( .1. e. K /\ .1. e. V ) -> ( .1. .x. .1. ) = ( .1. ( .s ` W ) .1. ) ) |
42 |
40 36 41
|
syl2an |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. ( .s ` W ) .1. ) ) |
43 |
3 4 28 7
|
lmodvs1 |
|- ( ( W e. LMod /\ .1. e. V ) -> ( .1. ( .s ` W ) .1. ) = .1. ) |
44 |
43
|
ad2ant2rl |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( .s ` W ) .1. ) = .1. ) |
45 |
42 44
|
eqtrd |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = .1. ) |
46 |
|
oveq |
|- ( .+ = .x. -> ( .1. .+ .1. ) = ( .1. .x. .1. ) ) |
47 |
46
|
eqcomd |
|- ( .+ = .x. -> ( .1. .x. .1. ) = ( .1. .+ .1. ) ) |
48 |
47
|
ad2antlr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. .+ .1. ) ) |
49 |
36 36
|
jca |
|- ( ( .0. e. V /\ .1. e. V ) -> ( .1. e. V /\ .1. e. V ) ) |
50 |
49
|
adantl |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. e. V /\ .1. e. V ) ) |
51 |
3 13 2
|
plusfval |
|- ( ( .1. e. V /\ .1. e. V ) -> ( .1. .+ .1. ) = ( .1. ( +g ` W ) .1. ) ) |
52 |
50 51
|
syl |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .+ .1. ) = ( .1. ( +g ` W ) .1. ) ) |
53 |
48 52
|
eqtrd |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. ( +g ` W ) .1. ) ) |
54 |
38 45 53
|
3eqtr2d |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) ) |
55 |
21
|
adantr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> W e. Grp ) |
56 |
12
|
adantr |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( 0g ` W ) e. V ) |
57 |
36
|
adantl |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> .1. e. V ) |
58 |
3 13
|
grplcan |
|- ( ( W e. Grp /\ ( ( 0g ` W ) e. V /\ .1. e. V /\ .1. e. V ) ) -> ( ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) <-> ( 0g ` W ) = .1. ) ) |
59 |
55 56 57 57 58
|
syl13anc |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) <-> ( 0g ` W ) = .1. ) ) |
60 |
54 59
|
mpbid |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( 0g ` W ) = .1. ) |
61 |
30 35 60
|
3eqtrd |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .x. ( 0g ` W ) ) = .1. ) |
62 |
19 23 61
|
3eqtr3rd |
|- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> .1. = .0. ) |
63 |
8 62
|
mpdan |
|- ( ( W e. LMod /\ .+ = .x. ) -> .1. = .0. ) |
64 |
63
|
ex |
|- ( W e. LMod -> ( .+ = .x. -> .1. = .0. ) ) |
65 |
64
|
necon3d |
|- ( W e. LMod -> ( .1. =/= .0. -> .+ =/= .x. ) ) |
66 |
65
|
imp |
|- ( ( W e. LMod /\ .1. =/= .0. ) -> .+ =/= .x. ) |