Step |
Hyp |
Ref |
Expression |
1 |
|
lmodfopne.t |
|- .x. = ( .sf ` W ) |
2 |
|
lmodfopne.a |
|- .+ = ( +f ` W ) |
3 |
|
lmodfopne.v |
|- V = ( Base ` W ) |
4 |
|
lmodfopne.s |
|- S = ( Scalar ` W ) |
5 |
|
lmodfopne.k |
|- K = ( Base ` S ) |
6 |
3 4 5 1
|
lmodscaf |
|- ( W e. LMod -> .x. : ( K X. V ) --> V ) |
7 |
6
|
ffnd |
|- ( W e. LMod -> .x. Fn ( K X. V ) ) |
8 |
3 2
|
plusffn |
|- .+ Fn ( V X. V ) |
9 |
|
fneq1 |
|- ( .+ = .x. -> ( .+ Fn ( V X. V ) <-> .x. Fn ( V X. V ) ) ) |
10 |
|
fndmu |
|- ( ( .x. Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( V X. V ) = ( K X. V ) ) |
11 |
10
|
ex |
|- ( .x. Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( V X. V ) = ( K X. V ) ) ) |
12 |
9 11
|
syl6bi |
|- ( .+ = .x. -> ( .+ Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( V X. V ) = ( K X. V ) ) ) ) |
13 |
12
|
com13 |
|- ( .x. Fn ( K X. V ) -> ( .+ Fn ( V X. V ) -> ( .+ = .x. -> ( V X. V ) = ( K X. V ) ) ) ) |
14 |
13
|
impcom |
|- ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( .+ = .x. -> ( V X. V ) = ( K X. V ) ) ) |
15 |
3
|
lmodbn0 |
|- ( W e. LMod -> V =/= (/) ) |
16 |
|
xp11 |
|- ( ( V =/= (/) /\ V =/= (/) ) -> ( ( V X. V ) = ( K X. V ) <-> ( V = K /\ V = V ) ) ) |
17 |
15 15 16
|
syl2anc |
|- ( W e. LMod -> ( ( V X. V ) = ( K X. V ) <-> ( V = K /\ V = V ) ) ) |
18 |
17
|
simprbda |
|- ( ( W e. LMod /\ ( V X. V ) = ( K X. V ) ) -> V = K ) |
19 |
18
|
expcom |
|- ( ( V X. V ) = ( K X. V ) -> ( W e. LMod -> V = K ) ) |
20 |
14 19
|
syl6 |
|- ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( .+ = .x. -> ( W e. LMod -> V = K ) ) ) |
21 |
20
|
com23 |
|- ( ( .+ Fn ( V X. V ) /\ .x. Fn ( K X. V ) ) -> ( W e. LMod -> ( .+ = .x. -> V = K ) ) ) |
22 |
21
|
ex |
|- ( .+ Fn ( V X. V ) -> ( .x. Fn ( K X. V ) -> ( W e. LMod -> ( .+ = .x. -> V = K ) ) ) ) |
23 |
22
|
com23 |
|- ( .+ Fn ( V X. V ) -> ( W e. LMod -> ( .x. Fn ( K X. V ) -> ( .+ = .x. -> V = K ) ) ) ) |
24 |
8 23
|
ax-mp |
|- ( W e. LMod -> ( .x. Fn ( K X. V ) -> ( .+ = .x. -> V = K ) ) ) |
25 |
7 24
|
mpd |
|- ( W e. LMod -> ( .+ = .x. -> V = K ) ) |
26 |
25
|
imp |
|- ( ( W e. LMod /\ .+ = .x. ) -> V = K ) |