Metamath Proof Explorer


Theorem lmodfopnelem2

Description: Lemma 2 for lmodfopne . (Contributed by AV, 2-Oct-2021)

Ref Expression
Hypotheses lmodfopne.t
|- .x. = ( .sf ` W )
lmodfopne.a
|- .+ = ( +f ` W )
lmodfopne.v
|- V = ( Base ` W )
lmodfopne.s
|- S = ( Scalar ` W )
lmodfopne.k
|- K = ( Base ` S )
lmodfopne.0
|- .0. = ( 0g ` S )
lmodfopne.1
|- .1. = ( 1r ` S )
Assertion lmodfopnelem2
|- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) )

Proof

Step Hyp Ref Expression
1 lmodfopne.t
 |-  .x. = ( .sf ` W )
2 lmodfopne.a
 |-  .+ = ( +f ` W )
3 lmodfopne.v
 |-  V = ( Base ` W )
4 lmodfopne.s
 |-  S = ( Scalar ` W )
5 lmodfopne.k
 |-  K = ( Base ` S )
6 lmodfopne.0
 |-  .0. = ( 0g ` S )
7 lmodfopne.1
 |-  .1. = ( 1r ` S )
8 1 2 3 4 5 lmodfopnelem1
 |-  ( ( W e. LMod /\ .+ = .x. ) -> V = K )
9 8 ex
 |-  ( W e. LMod -> ( .+ = .x. -> V = K ) )
10 4 5 6 lmod0cl
 |-  ( W e. LMod -> .0. e. K )
11 4 5 7 lmod1cl
 |-  ( W e. LMod -> .1. e. K )
12 10 11 jca
 |-  ( W e. LMod -> ( .0. e. K /\ .1. e. K ) )
13 eleq2
 |-  ( V = K -> ( .0. e. V <-> .0. e. K ) )
14 eleq2
 |-  ( V = K -> ( .1. e. V <-> .1. e. K ) )
15 13 14 anbi12d
 |-  ( V = K -> ( ( .0. e. V /\ .1. e. V ) <-> ( .0. e. K /\ .1. e. K ) ) )
16 12 15 syl5ibrcom
 |-  ( W e. LMod -> ( V = K -> ( .0. e. V /\ .1. e. V ) ) )
17 9 16 syld
 |-  ( W e. LMod -> ( .+ = .x. -> ( .0. e. V /\ .1. e. V ) ) )
18 17 imp
 |-  ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) )