Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
2 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
3 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
5 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
6 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
7 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
8 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
9 |
1 2 3 4 5 6 7 8
|
islmod |
|- ( W e. LMod <-> ( W e. Grp /\ ( Scalar ` W ) e. Ring /\ A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
10 |
9
|
simp1bi |
|- ( W e. LMod -> W e. Grp ) |