| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodindp1.v |
|- V = ( Base ` W ) |
| 2 |
|
lmodindp1.p |
|- .+ = ( +g ` W ) |
| 3 |
|
lmodindp1.o |
|- .0. = ( 0g ` W ) |
| 4 |
|
lmodindp1.n |
|- N = ( LSpan ` W ) |
| 5 |
|
lmodindp1.w |
|- ( ph -> W e. LMod ) |
| 6 |
|
lmodindp1.x |
|- ( ph -> X e. V ) |
| 7 |
|
lmodindp1.y |
|- ( ph -> Y e. V ) |
| 8 |
|
lmodindp1.q |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 9 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 10 |
1 9 4
|
lspsnneg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { X } ) ) |
| 11 |
5 6 10
|
syl2anc |
|- ( ph -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { X } ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( N ` { X } ) = ( N ` { ( ( invg ` W ) ` X ) } ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { X } ) = ( N ` { ( ( invg ` W ) ` X ) } ) ) |
| 14 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 15 |
5 14
|
syl |
|- ( ph -> W e. Grp ) |
| 16 |
1 2 3 9
|
grpinvid1 |
|- ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( ( ( invg ` W ) ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |
| 17 |
15 6 7 16
|
syl3anc |
|- ( ph -> ( ( ( invg ` W ) ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |
| 18 |
17
|
biimpar |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( ( invg ` W ) ` X ) = Y ) |
| 19 |
18
|
sneqd |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> { ( ( invg ` W ) ` X ) } = { Y } ) |
| 20 |
19
|
fveq2d |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { Y } ) ) |
| 21 |
13 20
|
eqtrd |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 22 |
21
|
ex |
|- ( ph -> ( ( X .+ Y ) = .0. -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 23 |
22
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( X .+ Y ) =/= .0. ) ) |
| 24 |
8 23
|
mpd |
|- ( ph -> ( X .+ Y ) =/= .0. ) |