Step |
Hyp |
Ref |
Expression |
1 |
|
lmodindp1.v |
|- V = ( Base ` W ) |
2 |
|
lmodindp1.p |
|- .+ = ( +g ` W ) |
3 |
|
lmodindp1.o |
|- .0. = ( 0g ` W ) |
4 |
|
lmodindp1.n |
|- N = ( LSpan ` W ) |
5 |
|
lmodindp1.w |
|- ( ph -> W e. LMod ) |
6 |
|
lmodindp1.x |
|- ( ph -> X e. V ) |
7 |
|
lmodindp1.y |
|- ( ph -> Y e. V ) |
8 |
|
lmodindp1.q |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
9 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
10 |
1 9 4
|
lspsnneg |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { X } ) ) |
11 |
5 6 10
|
syl2anc |
|- ( ph -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { X } ) ) |
12 |
11
|
eqcomd |
|- ( ph -> ( N ` { X } ) = ( N ` { ( ( invg ` W ) ` X ) } ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { X } ) = ( N ` { ( ( invg ` W ) ` X ) } ) ) |
14 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
15 |
5 14
|
syl |
|- ( ph -> W e. Grp ) |
16 |
1 2 3 9
|
grpinvid1 |
|- ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( ( ( invg ` W ) ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |
17 |
15 6 7 16
|
syl3anc |
|- ( ph -> ( ( ( invg ` W ) ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |
18 |
17
|
biimpar |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( ( invg ` W ) ` X ) = Y ) |
19 |
18
|
sneqd |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> { ( ( invg ` W ) ` X ) } = { Y } ) |
20 |
19
|
fveq2d |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { Y } ) ) |
21 |
13 20
|
eqtrd |
|- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
22 |
21
|
ex |
|- ( ph -> ( ( X .+ Y ) = .0. -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
23 |
22
|
necon3d |
|- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( X .+ Y ) =/= .0. ) ) |
24 |
8 23
|
mpd |
|- ( ph -> ( X .+ Y ) =/= .0. ) |