Step |
Hyp |
Ref |
Expression |
1 |
|
lmodpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
2 |
|
lmodpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
3 |
|
lmodpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
4 |
|
lmodpropd.4 |
|- ( ph -> F = ( Scalar ` K ) ) |
5 |
|
lmodpropd.5 |
|- ( ph -> F = ( Scalar ` L ) ) |
6 |
|
lmodpropd.6 |
|- P = ( Base ` F ) |
7 |
|
lmodpropd.7 |
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
8 |
|
eqid |
|- ( Scalar ` K ) = ( Scalar ` K ) |
9 |
|
eqid |
|- ( Scalar ` L ) = ( Scalar ` L ) |
10 |
4
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` K ) ) ) |
11 |
6 10
|
eqtrid |
|- ( ph -> P = ( Base ` ( Scalar ` K ) ) ) |
12 |
5
|
fveq2d |
|- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` L ) ) ) |
13 |
6 12
|
eqtrid |
|- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
14 |
4 5
|
eqtr3d |
|- ( ph -> ( Scalar ` K ) = ( Scalar ` L ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( Scalar ` K ) = ( Scalar ` L ) ) |
16 |
15
|
fveq2d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( +g ` ( Scalar ` K ) ) = ( +g ` ( Scalar ` L ) ) ) |
17 |
16
|
oveqd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` ( Scalar ` K ) ) y ) = ( x ( +g ` ( Scalar ` L ) ) y ) ) |
18 |
15
|
fveq2d |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( .r ` ( Scalar ` K ) ) = ( .r ` ( Scalar ` L ) ) ) |
19 |
18
|
oveqd |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( .r ` ( Scalar ` K ) ) y ) = ( x ( .r ` ( Scalar ` L ) ) y ) ) |
20 |
1 2 8 9 11 13 3 17 19 7
|
lmodprop2d |
|- ( ph -> ( K e. LMod <-> L e. LMod ) ) |