| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodring.1 |
|- F = ( Scalar ` W ) |
| 2 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 3 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 4 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 5 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 6 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 7 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 8 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
| 9 |
2 3 4 1 5 6 7 8
|
islmod |
|- ( W e. LMod <-> ( W e. Grp /\ F e. Ring /\ A. q e. ( Base ` F ) A. r e. ( Base ` F ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` F ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` F ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` F ) ( .s ` W ) w ) = w ) ) ) ) |
| 10 |
9
|
simp2bi |
|- ( W e. LMod -> F e. Ring ) |