| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodstr.w |  |-  W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } ) | 
						
							| 2 | 1 | lmodstr |  |-  W Struct <. 1 , 6 >. | 
						
							| 3 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 4 |  | snsstp3 |  |-  { <. ( Scalar ` ndx ) , F >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } | 
						
							| 5 |  | ssun1 |  |-  { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } ) | 
						
							| 6 | 5 1 | sseqtrri |  |-  { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } C_ W | 
						
							| 7 | 4 6 | sstri |  |-  { <. ( Scalar ` ndx ) , F >. } C_ W | 
						
							| 8 | 2 3 7 | strfv |  |-  ( F e. X -> F = ( Scalar ` W ) ) |