Step |
Hyp |
Ref |
Expression |
1 |
|
scaffval.b |
|- B = ( Base ` W ) |
2 |
|
scaffval.f |
|- F = ( Scalar ` W ) |
3 |
|
scaffval.k |
|- K = ( Base ` F ) |
4 |
|
scaffval.a |
|- .xb = ( .sf ` W ) |
5 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
6 |
1 2 5 3
|
lmodvscl |
|- ( ( W e. LMod /\ x e. K /\ y e. B ) -> ( x ( .s ` W ) y ) e. B ) |
7 |
6
|
3expb |
|- ( ( W e. LMod /\ ( x e. K /\ y e. B ) ) -> ( x ( .s ` W ) y ) e. B ) |
8 |
7
|
ralrimivva |
|- ( W e. LMod -> A. x e. K A. y e. B ( x ( .s ` W ) y ) e. B ) |
9 |
1 2 3 4 5
|
scaffval |
|- .xb = ( x e. K , y e. B |-> ( x ( .s ` W ) y ) ) |
10 |
9
|
fmpo |
|- ( A. x e. K A. y e. B ( x ( .s ` W ) y ) e. B <-> .xb : ( K X. B ) --> B ) |
11 |
8 10
|
sylib |
|- ( W e. LMod -> .xb : ( K X. B ) --> B ) |