Step |
Hyp |
Ref |
Expression |
1 |
|
lmodstr.w |
|- W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } ) |
2 |
|
1nn |
|- 1 e. NN |
3 |
|
basendx |
|- ( Base ` ndx ) = 1 |
4 |
|
1lt2 |
|- 1 < 2 |
5 |
|
2nn |
|- 2 e. NN |
6 |
|
plusgndx |
|- ( +g ` ndx ) = 2 |
7 |
|
2lt5 |
|- 2 < 5 |
8 |
|
5nn |
|- 5 e. NN |
9 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
10 |
2 3 4 5 6 7 8 9
|
strle3 |
|- { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } Struct <. 1 , 5 >. |
11 |
|
6nn |
|- 6 e. NN |
12 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
13 |
11 12
|
strle1 |
|- { <. ( .s ` ndx ) , .x. >. } Struct <. 6 , 6 >. |
14 |
|
5lt6 |
|- 5 < 6 |
15 |
10 13 14
|
strleun |
|- ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } ) Struct <. 1 , 6 >. |
16 |
1 15
|
eqbrtri |
|- W Struct <. 1 , 6 >. |