Step |
Hyp |
Ref |
Expression |
1 |
|
lmodsubdir.v |
|- V = ( Base ` W ) |
2 |
|
lmodsubdir.t |
|- .x. = ( .s ` W ) |
3 |
|
lmodsubdir.f |
|- F = ( Scalar ` W ) |
4 |
|
lmodsubdir.k |
|- K = ( Base ` F ) |
5 |
|
lmodsubdir.m |
|- .- = ( -g ` W ) |
6 |
|
lmodsubdir.s |
|- S = ( -g ` F ) |
7 |
|
lmodsubdir.w |
|- ( ph -> W e. LMod ) |
8 |
|
lmodsubdir.a |
|- ( ph -> A e. K ) |
9 |
|
lmodsubdir.b |
|- ( ph -> B e. K ) |
10 |
|
lmodsubdir.x |
|- ( ph -> X e. V ) |
11 |
3
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
12 |
7 11
|
syl |
|- ( ph -> F e. Ring ) |
13 |
|
ringgrp |
|- ( F e. Ring -> F e. Grp ) |
14 |
12 13
|
syl |
|- ( ph -> F e. Grp ) |
15 |
|
eqid |
|- ( invg ` F ) = ( invg ` F ) |
16 |
4 15
|
grpinvcl |
|- ( ( F e. Grp /\ B e. K ) -> ( ( invg ` F ) ` B ) e. K ) |
17 |
14 9 16
|
syl2anc |
|- ( ph -> ( ( invg ` F ) ` B ) e. K ) |
18 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
19 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
20 |
1 18 3 2 4 19
|
lmodvsdir |
|- ( ( W e. LMod /\ ( A e. K /\ ( ( invg ` F ) ` B ) e. K /\ X e. V ) ) -> ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` B ) .x. X ) ) ) |
21 |
7 8 17 10 20
|
syl13anc |
|- ( ph -> ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` B ) .x. X ) ) ) |
22 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
23 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
24 |
4 22 23 15 12 9
|
ringnegl |
|- ( ph -> ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) = ( ( invg ` F ) ` B ) ) |
25 |
24
|
oveq1d |
|- ( ph -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) .x. X ) = ( ( ( invg ` F ) ` B ) .x. X ) ) |
26 |
4 23
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. K ) |
27 |
12 26
|
syl |
|- ( ph -> ( 1r ` F ) e. K ) |
28 |
4 15
|
grpinvcl |
|- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( ( invg ` F ) ` ( 1r ` F ) ) e. K ) |
29 |
14 27 28
|
syl2anc |
|- ( ph -> ( ( invg ` F ) ` ( 1r ` F ) ) e. K ) |
30 |
1 3 2 4 22
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( ( invg ` F ) ` ( 1r ` F ) ) e. K /\ B e. K /\ X e. V ) ) -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) |
31 |
7 29 9 10 30
|
syl13anc |
|- ( ph -> ( ( ( ( invg ` F ) ` ( 1r ` F ) ) ( .r ` F ) B ) .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) |
32 |
25 31
|
eqtr3d |
|- ( ph -> ( ( ( invg ` F ) ` B ) .x. X ) = ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) |
33 |
32
|
oveq2d |
|- ( ph -> ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` B ) .x. X ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
34 |
21 33
|
eqtrd |
|- ( ph -> ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
35 |
4 19 15 6
|
grpsubval |
|- ( ( A e. K /\ B e. K ) -> ( A S B ) = ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) ) |
36 |
8 9 35
|
syl2anc |
|- ( ph -> ( A S B ) = ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) ) |
37 |
36
|
oveq1d |
|- ( ph -> ( ( A S B ) .x. X ) = ( ( A ( +g ` F ) ( ( invg ` F ) ` B ) ) .x. X ) ) |
38 |
1 3 2 4
|
lmodvscl |
|- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
39 |
7 8 10 38
|
syl3anc |
|- ( ph -> ( A .x. X ) e. V ) |
40 |
1 3 2 4
|
lmodvscl |
|- ( ( W e. LMod /\ B e. K /\ X e. V ) -> ( B .x. X ) e. V ) |
41 |
7 9 10 40
|
syl3anc |
|- ( ph -> ( B .x. X ) e. V ) |
42 |
1 18 5 3 2 15 23
|
lmodvsubval2 |
|- ( ( W e. LMod /\ ( A .x. X ) e. V /\ ( B .x. X ) e. V ) -> ( ( A .x. X ) .- ( B .x. X ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
43 |
7 39 41 42
|
syl3anc |
|- ( ph -> ( ( A .x. X ) .- ( B .x. X ) ) = ( ( A .x. X ) ( +g ` W ) ( ( ( invg ` F ) ` ( 1r ` F ) ) .x. ( B .x. X ) ) ) ) |
44 |
34 37 43
|
3eqtr4d |
|- ( ph -> ( ( A S B ) .x. X ) = ( ( A .x. X ) .- ( B .x. X ) ) ) |