Description: If the difference between two vectors is zero, they are equal. ( hvsubeq0 analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodsubeq0.v | |- V = ( Base ` W ) |
|
lmodsubeq0.o | |- .0. = ( 0g ` W ) |
||
lmodsubeq0.m | |- .- = ( -g ` W ) |
||
Assertion | lmodsubeq0 | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( ( A .- B ) = .0. <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubeq0.v | |- V = ( Base ` W ) |
|
2 | lmodsubeq0.o | |- .0. = ( 0g ` W ) |
|
3 | lmodsubeq0.m | |- .- = ( -g ` W ) |
|
4 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
5 | 1 2 3 | grpsubeq0 | |- ( ( W e. Grp /\ A e. V /\ B e. V ) -> ( ( A .- B ) = .0. <-> A = B ) ) |
6 | 4 5 | syl3an1 | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( ( A .- B ) = .0. <-> A = B ) ) |