Metamath Proof Explorer


Theorem lmodsubid

Description: Subtraction of a vector from itself. ( hvsubid analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsubeq0.v
|- V = ( Base ` W )
lmodsubeq0.o
|- .0. = ( 0g ` W )
lmodsubeq0.m
|- .- = ( -g ` W )
Assertion lmodsubid
|- ( ( W e. LMod /\ A e. V ) -> ( A .- A ) = .0. )

Proof

Step Hyp Ref Expression
1 lmodsubeq0.v
 |-  V = ( Base ` W )
2 lmodsubeq0.o
 |-  .0. = ( 0g ` W )
3 lmodsubeq0.m
 |-  .- = ( -g ` W )
4 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
5 1 2 3 grpsubid
 |-  ( ( W e. Grp /\ A e. V ) -> ( A .- A ) = .0. )
6 4 5 sylan
 |-  ( ( W e. LMod /\ A e. V ) -> ( A .- A ) = .0. )