Metamath Proof Explorer


Theorem lmodvacl

Description: Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvacl.v
|- V = ( Base ` W )
lmodvacl.a
|- .+ = ( +g ` W )
Assertion lmodvacl
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V )

Proof

Step Hyp Ref Expression
1 lmodvacl.v
 |-  V = ( Base ` W )
2 lmodvacl.a
 |-  .+ = ( +g ` W )
3 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
4 1 2 grpcl
 |-  ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V )
5 3 4 syl3an1
 |-  ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V )