Description: Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmod4.v | |- V = ( Base ` W ) |
|
lmod4.p | |- .+ = ( +g ` W ) |
||
lmodvaddsub4.m | |- .- = ( -g ` W ) |
||
Assertion | lmodvaddsub4 | |- ( ( W e. LMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) = ( C .+ D ) <-> ( A .- C ) = ( D .- B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod4.v | |- V = ( Base ` W ) |
|
2 | lmod4.p | |- .+ = ( +g ` W ) |
|
3 | lmodvaddsub4.m | |- .- = ( -g ` W ) |
|
4 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
5 | 1 2 3 | abladdsub4 | |- ( ( W e. Abel /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) = ( C .+ D ) <-> ( A .- C ) = ( D .- B ) ) ) |
6 | 4 5 | syl3an1 | |- ( ( W e. LMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) = ( C .+ D ) <-> ( A .- C ) = ( D .- B ) ) ) |