| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvneg1.v |
|- V = ( Base ` W ) |
| 2 |
|
lmodvneg1.n |
|- N = ( invg ` W ) |
| 3 |
|
lmodvneg1.f |
|- F = ( Scalar ` W ) |
| 4 |
|
lmodvneg1.s |
|- .x. = ( .s ` W ) |
| 5 |
|
lmodvneg1.u |
|- .1. = ( 1r ` F ) |
| 6 |
|
lmodvneg1.m |
|- M = ( invg ` F ) |
| 7 |
|
simpl |
|- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
| 8 |
3
|
lmodfgrp |
|- ( W e. LMod -> F e. Grp ) |
| 9 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 10 |
3 9 5
|
lmod1cl |
|- ( W e. LMod -> .1. e. ( Base ` F ) ) |
| 11 |
10
|
adantr |
|- ( ( W e. LMod /\ X e. V ) -> .1. e. ( Base ` F ) ) |
| 12 |
9 6
|
grpinvcl |
|- ( ( F e. Grp /\ .1. e. ( Base ` F ) ) -> ( M ` .1. ) e. ( Base ` F ) ) |
| 13 |
8 11 12
|
syl2an2r |
|- ( ( W e. LMod /\ X e. V ) -> ( M ` .1. ) e. ( Base ` F ) ) |
| 14 |
|
simpr |
|- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
| 15 |
1 3 4 9
|
lmodvscl |
|- ( ( W e. LMod /\ ( M ` .1. ) e. ( Base ` F ) /\ X e. V ) -> ( ( M ` .1. ) .x. X ) e. V ) |
| 16 |
7 13 14 15
|
syl3anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) e. V ) |
| 17 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 18 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 19 |
1 17 18
|
lmod0vrid |
|- ( ( W e. LMod /\ ( ( M ` .1. ) .x. X ) e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( ( M ` .1. ) .x. X ) ) |
| 20 |
16 19
|
syldan |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( ( M ` .1. ) .x. X ) ) |
| 21 |
1 2
|
lmodvnegcl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V ) |
| 22 |
1 17
|
lmodass |
|- ( ( W e. LMod /\ ( ( ( M ` .1. ) .x. X ) e. V /\ X e. V /\ ( N ` X ) e. V ) ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) ) |
| 23 |
7 16 14 21 22
|
syl13anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) ) |
| 24 |
1 3 4 5
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X ) |
| 25 |
24
|
oveq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ) |
| 26 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 27 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 28 |
9 26 27 6
|
grplinv |
|- ( ( F e. Grp /\ .1. e. ( Base ` F ) ) -> ( ( M ` .1. ) ( +g ` F ) .1. ) = ( 0g ` F ) ) |
| 29 |
8 11 28
|
syl2an2r |
|- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) ( +g ` F ) .1. ) = ( 0g ` F ) ) |
| 30 |
29
|
oveq1d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( 0g ` F ) .x. X ) ) |
| 31 |
1 17 3 4 9 26
|
lmodvsdir |
|- ( ( W e. LMod /\ ( ( M ` .1. ) e. ( Base ` F ) /\ .1. e. ( Base ` F ) /\ X e. V ) ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) |
| 32 |
7 13 11 14 31
|
syl13anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) |
| 33 |
1 3 4 27 18
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) |
| 34 |
30 32 33
|
3eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) = ( 0g ` W ) ) |
| 35 |
25 34
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) = ( 0g ` W ) ) |
| 36 |
35
|
oveq1d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) ) |
| 37 |
23 36
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) = ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) ) |
| 38 |
1 17 18 2
|
lmodvnegid |
|- ( ( W e. LMod /\ X e. V ) -> ( X ( +g ` W ) ( N ` X ) ) = ( 0g ` W ) ) |
| 39 |
38
|
oveq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) ) |
| 40 |
1 17 18
|
lmod0vlid |
|- ( ( W e. LMod /\ ( N ` X ) e. V ) -> ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) = ( N ` X ) ) |
| 41 |
21 40
|
syldan |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) = ( N ` X ) ) |
| 42 |
37 39 41
|
3eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( N ` X ) ) |
| 43 |
20 42
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) = ( N ` X ) ) |