Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvneg1.v |
|- V = ( Base ` W ) |
2 |
|
lmodvneg1.n |
|- N = ( invg ` W ) |
3 |
|
lmodvneg1.f |
|- F = ( Scalar ` W ) |
4 |
|
lmodvneg1.s |
|- .x. = ( .s ` W ) |
5 |
|
lmodvneg1.u |
|- .1. = ( 1r ` F ) |
6 |
|
lmodvneg1.m |
|- M = ( invg ` F ) |
7 |
|
simpl |
|- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
8 |
3
|
lmodfgrp |
|- ( W e. LMod -> F e. Grp ) |
9 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
10 |
3 9 5
|
lmod1cl |
|- ( W e. LMod -> .1. e. ( Base ` F ) ) |
11 |
10
|
adantr |
|- ( ( W e. LMod /\ X e. V ) -> .1. e. ( Base ` F ) ) |
12 |
9 6
|
grpinvcl |
|- ( ( F e. Grp /\ .1. e. ( Base ` F ) ) -> ( M ` .1. ) e. ( Base ` F ) ) |
13 |
8 11 12
|
syl2an2r |
|- ( ( W e. LMod /\ X e. V ) -> ( M ` .1. ) e. ( Base ` F ) ) |
14 |
|
simpr |
|- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
15 |
1 3 4 9
|
lmodvscl |
|- ( ( W e. LMod /\ ( M ` .1. ) e. ( Base ` F ) /\ X e. V ) -> ( ( M ` .1. ) .x. X ) e. V ) |
16 |
7 13 14 15
|
syl3anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) e. V ) |
17 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
18 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
19 |
1 17 18
|
lmod0vrid |
|- ( ( W e. LMod /\ ( ( M ` .1. ) .x. X ) e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( ( M ` .1. ) .x. X ) ) |
20 |
16 19
|
syldan |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( ( M ` .1. ) .x. X ) ) |
21 |
1 2
|
lmodvnegcl |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V ) |
22 |
1 17
|
lmodass |
|- ( ( W e. LMod /\ ( ( ( M ` .1. ) .x. X ) e. V /\ X e. V /\ ( N ` X ) e. V ) ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) ) |
23 |
7 16 14 21 22
|
syl13anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) ) |
24 |
1 3 4 5
|
lmodvs1 |
|- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X ) |
25 |
24
|
oveq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ) |
26 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
27 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
28 |
9 26 27 6
|
grplinv |
|- ( ( F e. Grp /\ .1. e. ( Base ` F ) ) -> ( ( M ` .1. ) ( +g ` F ) .1. ) = ( 0g ` F ) ) |
29 |
8 11 28
|
syl2an2r |
|- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) ( +g ` F ) .1. ) = ( 0g ` F ) ) |
30 |
29
|
oveq1d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( 0g ` F ) .x. X ) ) |
31 |
1 17 3 4 9 26
|
lmodvsdir |
|- ( ( W e. LMod /\ ( ( M ` .1. ) e. ( Base ` F ) /\ .1. e. ( Base ` F ) /\ X e. V ) ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) |
32 |
7 13 11 14 31
|
syl13anc |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) ( +g ` F ) .1. ) .x. X ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) |
33 |
1 3 4 27 18
|
lmod0vs |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) |
34 |
30 32 33
|
3eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( .1. .x. X ) ) = ( 0g ` W ) ) |
35 |
25 34
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) = ( 0g ` W ) ) |
36 |
35
|
oveq1d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( ( M ` .1. ) .x. X ) ( +g ` W ) X ) ( +g ` W ) ( N ` X ) ) = ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) ) |
37 |
23 36
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) = ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) ) |
38 |
1 17 18 2
|
lmodvnegid |
|- ( ( W e. LMod /\ X e. V ) -> ( X ( +g ` W ) ( N ` X ) ) = ( 0g ` W ) ) |
39 |
38
|
oveq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( X ( +g ` W ) ( N ` X ) ) ) = ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) ) |
40 |
1 17 18
|
lmod0vlid |
|- ( ( W e. LMod /\ ( N ` X ) e. V ) -> ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) = ( N ` X ) ) |
41 |
21 40
|
syldan |
|- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` W ) ( +g ` W ) ( N ` X ) ) = ( N ` X ) ) |
42 |
37 39 41
|
3eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( M ` .1. ) .x. X ) ( +g ` W ) ( 0g ` W ) ) = ( N ` X ) ) |
43 |
20 42
|
eqtr3d |
|- ( ( W e. LMod /\ X e. V ) -> ( ( M ` .1. ) .x. X ) = ( N ` X ) ) |