Description: Closure of vector negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodvnegcl.v | |- V = ( Base ` W ) |
|
lmodvnegcl.n | |- N = ( invg ` W ) |
||
Assertion | lmodvnegcl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvnegcl.v | |- V = ( Base ` W ) |
|
2 | lmodvnegcl.n | |- N = ( invg ` W ) |
|
3 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
4 | 1 2 | grpinvcl | |- ( ( W e. Grp /\ X e. V ) -> ( N ` X ) e. V ) |
5 | 3 4 | sylan | |- ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V ) |