Metamath Proof Explorer


Theorem lmodvnegcl

Description: Closure of vector negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvnegcl.v
|- V = ( Base ` W )
lmodvnegcl.n
|- N = ( invg ` W )
Assertion lmodvnegcl
|- ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V )

Proof

Step Hyp Ref Expression
1 lmodvnegcl.v
 |-  V = ( Base ` W )
2 lmodvnegcl.n
 |-  N = ( invg ` W )
3 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
4 1 2 grpinvcl
 |-  ( ( W e. Grp /\ X e. V ) -> ( N ` X ) e. V )
5 3 4 sylan
 |-  ( ( W e. LMod /\ X e. V ) -> ( N ` X ) e. V )