Metamath Proof Explorer


Theorem lmodvnegid

Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvnegid.v
|- V = ( Base ` W )
lmodvnegid.p
|- .+ = ( +g ` W )
lmodvnegid.z
|- .0. = ( 0g ` W )
lmodvnegid.n
|- N = ( invg ` W )
Assertion lmodvnegid
|- ( ( W e. LMod /\ X e. V ) -> ( X .+ ( N ` X ) ) = .0. )

Proof

Step Hyp Ref Expression
1 lmodvnegid.v
 |-  V = ( Base ` W )
2 lmodvnegid.p
 |-  .+ = ( +g ` W )
3 lmodvnegid.z
 |-  .0. = ( 0g ` W )
4 lmodvnegid.n
 |-  N = ( invg ` W )
5 lmodgrp
 |-  ( W e. LMod -> W e. Grp )
6 1 2 3 4 grprinv
 |-  ( ( W e. Grp /\ X e. V ) -> ( X .+ ( N ` X ) ) = .0. )
7 5 6 sylan
 |-  ( ( W e. LMod /\ X e. V ) -> ( X .+ ( N ` X ) ) = .0. )