Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvs0.f |
|- F = ( Scalar ` W ) |
2 |
|
lmodvs0.s |
|- .x. = ( .s ` W ) |
3 |
|
lmodvs0.k |
|- K = ( Base ` F ) |
4 |
|
lmodvs0.z |
|- .0. = ( 0g ` W ) |
5 |
1
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
6 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
7 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
8 |
3 6 7
|
ringrz |
|- ( ( F e. Ring /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) ) |
9 |
5 8
|
sylan |
|- ( ( W e. LMod /\ X e. K ) -> ( X ( .r ` F ) ( 0g ` F ) ) = ( 0g ` F ) ) |
10 |
9
|
oveq1d |
|- ( ( W e. LMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( ( 0g ` F ) .x. .0. ) ) |
11 |
|
simpl |
|- ( ( W e. LMod /\ X e. K ) -> W e. LMod ) |
12 |
|
simpr |
|- ( ( W e. LMod /\ X e. K ) -> X e. K ) |
13 |
5
|
adantr |
|- ( ( W e. LMod /\ X e. K ) -> F e. Ring ) |
14 |
3 7
|
ring0cl |
|- ( F e. Ring -> ( 0g ` F ) e. K ) |
15 |
13 14
|
syl |
|- ( ( W e. LMod /\ X e. K ) -> ( 0g ` F ) e. K ) |
16 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
17 |
16 4
|
lmod0vcl |
|- ( W e. LMod -> .0. e. ( Base ` W ) ) |
18 |
17
|
adantr |
|- ( ( W e. LMod /\ X e. K ) -> .0. e. ( Base ` W ) ) |
19 |
16 1 2 3 6
|
lmodvsass |
|- ( ( W e. LMod /\ ( X e. K /\ ( 0g ` F ) e. K /\ .0. e. ( Base ` W ) ) ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) ) |
20 |
11 12 15 18 19
|
syl13anc |
|- ( ( W e. LMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. ( ( 0g ` F ) .x. .0. ) ) ) |
21 |
16 1 2 7 4
|
lmod0vs |
|- ( ( W e. LMod /\ .0. e. ( Base ` W ) ) -> ( ( 0g ` F ) .x. .0. ) = .0. ) |
22 |
18 21
|
syldan |
|- ( ( W e. LMod /\ X e. K ) -> ( ( 0g ` F ) .x. .0. ) = .0. ) |
23 |
22
|
oveq2d |
|- ( ( W e. LMod /\ X e. K ) -> ( X .x. ( ( 0g ` F ) .x. .0. ) ) = ( X .x. .0. ) ) |
24 |
20 23
|
eqtrd |
|- ( ( W e. LMod /\ X e. K ) -> ( ( X ( .r ` F ) ( 0g ` F ) ) .x. .0. ) = ( X .x. .0. ) ) |
25 |
10 24 22
|
3eqtr3d |
|- ( ( W e. LMod /\ X e. K ) -> ( X .x. .0. ) = .0. ) |