| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvs1.v |
|- V = ( Base ` W ) |
| 2 |
|
lmodvs1.f |
|- F = ( Scalar ` W ) |
| 3 |
|
lmodvs1.s |
|- .x. = ( .s ` W ) |
| 4 |
|
lmodvs1.u |
|- .1. = ( 1r ` F ) |
| 5 |
|
simpl |
|- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
| 6 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 7 |
2 6 4
|
lmod1cl |
|- ( W e. LMod -> .1. e. ( Base ` F ) ) |
| 8 |
7
|
adantr |
|- ( ( W e. LMod /\ X e. V ) -> .1. e. ( Base ` F ) ) |
| 9 |
|
simpr |
|- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
| 10 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 11 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
| 12 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
| 13 |
1 10 3 2 6 11 12 4
|
lmodlema |
|- ( ( W e. LMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. .x. X ) e. V /\ ( .1. .x. ( X ( +g ` W ) X ) ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) /\ ( ( .1. ( +g ` F ) .1. ) .x. X ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) /\ ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X ) ) ) |
| 14 |
13
|
simprrd |
|- ( ( W e. LMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( .1. .x. X ) = X ) |
| 15 |
5 8 8 9 9 14
|
syl122anc |
|- ( ( W e. LMod /\ X e. V ) -> ( .1. .x. X ) = X ) |