Metamath Proof Explorer


Theorem lmodvsca

Description: The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w
|- W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } )
Assertion lmodvsca
|- ( .x. e. X -> .x. = ( .s ` W ) )

Proof

Step Hyp Ref Expression
1 lmodstr.w
 |-  W = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } )
2 1 lmodstr
 |-  W Struct <. 1 , 6 >.
3 vscaid
 |-  .s = Slot ( .s ` ndx )
4 ssun2
 |-  { <. ( .s ` ndx ) , .x. >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , F >. } u. { <. ( .s ` ndx ) , .x. >. } )
5 4 1 sseqtrri
 |-  { <. ( .s ` ndx ) , .x. >. } C_ W
6 2 3 5 strfv
 |-  ( .x. e. X -> .x. = ( .s ` W ) )