Metamath Proof Explorer


Theorem lmodvscld

Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses lmodvscld.v
|- V = ( Base ` W )
lmodvscld.f
|- F = ( Scalar ` W )
lmodvscld.s
|- .x. = ( .s ` W )
lmodvscld.k
|- K = ( Base ` F )
lmodvscld.w
|- ( ph -> W e. LMod )
lmodvscld.r
|- ( ph -> R e. K )
lmodvscld.x
|- ( ph -> X e. V )
Assertion lmodvscld
|- ( ph -> ( R .x. X ) e. V )

Proof

Step Hyp Ref Expression
1 lmodvscld.v
 |-  V = ( Base ` W )
2 lmodvscld.f
 |-  F = ( Scalar ` W )
3 lmodvscld.s
 |-  .x. = ( .s ` W )
4 lmodvscld.k
 |-  K = ( Base ` F )
5 lmodvscld.w
 |-  ( ph -> W e. LMod )
6 lmodvscld.r
 |-  ( ph -> R e. K )
7 lmodvscld.x
 |-  ( ph -> X e. V )
8 1 2 3 4 lmodvscl
 |-  ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V )
9 5 6 7 8 syl3anc
 |-  ( ph -> ( R .x. X ) e. V )