Step |
Hyp |
Ref |
Expression |
1 |
|
lmodvsneg.b |
|- B = ( Base ` W ) |
2 |
|
lmodvsneg.f |
|- F = ( Scalar ` W ) |
3 |
|
lmodvsneg.s |
|- .x. = ( .s ` W ) |
4 |
|
lmodvsneg.n |
|- N = ( invg ` W ) |
5 |
|
lmodvsneg.k |
|- K = ( Base ` F ) |
6 |
|
lmodvsneg.m |
|- M = ( invg ` F ) |
7 |
|
lmodvsneg.w |
|- ( ph -> W e. LMod ) |
8 |
|
lmodvsneg.x |
|- ( ph -> X e. B ) |
9 |
|
lmodvsneg.r |
|- ( ph -> R e. K ) |
10 |
2
|
lmodring |
|- ( W e. LMod -> F e. Ring ) |
11 |
7 10
|
syl |
|- ( ph -> F e. Ring ) |
12 |
|
ringgrp |
|- ( F e. Ring -> F e. Grp ) |
13 |
11 12
|
syl |
|- ( ph -> F e. Grp ) |
14 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
15 |
5 14
|
ringidcl |
|- ( F e. Ring -> ( 1r ` F ) e. K ) |
16 |
11 15
|
syl |
|- ( ph -> ( 1r ` F ) e. K ) |
17 |
5 6
|
grpinvcl |
|- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( M ` ( 1r ` F ) ) e. K ) |
18 |
13 16 17
|
syl2anc |
|- ( ph -> ( M ` ( 1r ` F ) ) e. K ) |
19 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
20 |
1 2 3 5 19
|
lmodvsass |
|- ( ( W e. LMod /\ ( ( M ` ( 1r ` F ) ) e. K /\ R e. K /\ X e. B ) ) -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) ) |
21 |
7 18 9 8 20
|
syl13anc |
|- ( ph -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) ) |
22 |
5 19 14 6 11 9
|
ringnegl |
|- ( ph -> ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) = ( M ` R ) ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` R ) .x. X ) ) |
24 |
1 2 3 5
|
lmodvscl |
|- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. X ) e. B ) |
25 |
7 9 8 24
|
syl3anc |
|- ( ph -> ( R .x. X ) e. B ) |
26 |
1 4 2 3 14 6
|
lmodvneg1 |
|- ( ( W e. LMod /\ ( R .x. X ) e. B ) -> ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) = ( N ` ( R .x. X ) ) ) |
27 |
7 25 26
|
syl2anc |
|- ( ph -> ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) = ( N ` ( R .x. X ) ) ) |
28 |
21 23 27
|
3eqtr3rd |
|- ( ph -> ( N ` ( R .x. X ) ) = ( ( M ` R ) .x. X ) ) |