Metamath Proof Explorer


Theorem lmodvsubadd

Description: Relationship between vector subtraction and addition. ( hvsubadd analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v
|- V = ( Base ` W )
lmod4.p
|- .+ = ( +g ` W )
lmodvaddsub4.m
|- .- = ( -g ` W )
Assertion lmodvsubadd
|- ( ( W e. LMod /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( B .+ C ) = A ) )

Proof

Step Hyp Ref Expression
1 lmod4.v
 |-  V = ( Base ` W )
2 lmod4.p
 |-  .+ = ( +g ` W )
3 lmodvaddsub4.m
 |-  .- = ( -g ` W )
4 lmodabl
 |-  ( W e. LMod -> W e. Abel )
5 1 2 3 ablsubadd
 |-  ( ( W e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( B .+ C ) = A ) )
6 4 5 sylan
 |-  ( ( W e. LMod /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( B .+ C ) = A ) )