Description: Relationship between vector subtraction and addition. ( hvsubadd analog.) (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmod4.v | |- V = ( Base ` W ) |
|
| lmod4.p | |- .+ = ( +g ` W ) |
||
| lmodvaddsub4.m | |- .- = ( -g ` W ) |
||
| Assertion | lmodvsubadd | |- ( ( W e. LMod /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( B .+ C ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod4.v | |- V = ( Base ` W ) |
|
| 2 | lmod4.p | |- .+ = ( +g ` W ) |
|
| 3 | lmodvaddsub4.m | |- .- = ( -g ` W ) |
|
| 4 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 5 | 1 2 3 | ablsubadd | |- ( ( W e. Abel /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( B .+ C ) = A ) ) |
| 6 | 4 5 | sylan | |- ( ( W e. LMod /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .- B ) = C <-> ( B .+ C ) = A ) ) |