| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodvsubval2.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lmodvsubval2.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | lmodvsubval2.m |  |-  .- = ( -g ` W ) | 
						
							| 4 |  | lmodvsubval2.f |  |-  F = ( Scalar ` W ) | 
						
							| 5 |  | lmodvsubval2.s |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | lmodvsubval2.n |  |-  N = ( invg ` F ) | 
						
							| 7 |  | lmodvsubval2.u |  |-  .1. = ( 1r ` F ) | 
						
							| 8 |  | eqid |  |-  ( invg ` W ) = ( invg ` W ) | 
						
							| 9 | 1 2 8 3 | grpsubval |  |-  ( ( A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( invg ` W ) ` B ) ) ) | 
						
							| 11 | 1 8 4 5 7 6 | lmodvneg1 |  |-  ( ( W e. LMod /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) | 
						
							| 12 | 11 | 3adant2 |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( ( N ` .1. ) .x. B ) = ( ( invg ` W ) ` B ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ ( ( N ` .1. ) .x. B ) ) = ( A .+ ( ( invg ` W ) ` B ) ) ) | 
						
							| 14 | 10 13 | eqtr4d |  |-  ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) = ( A .+ ( ( N ` .1. ) .x. B ) ) ) |