Metamath Proof Explorer


Theorem lmrcl

Description: Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015)

Ref Expression
Assertion lmrcl
|- ( F ( ~~>t ` J ) P -> J e. Top )

Proof

Step Hyp Ref Expression
1 df-lm
 |-  ~~>t = ( j e. Top |-> { <. f , x >. | ( f e. ( U. j ^pm CC ) /\ x e. U. j /\ A. u e. j ( x e. u -> E. y e. ran ZZ>= ( f |` y ) : y --> u ) ) } )
2 1 dmmptss
 |-  dom ~~>t C_ Top
3 df-br
 |-  ( F ( ~~>t ` J ) P <-> <. F , P >. e. ( ~~>t ` J ) )
4 elfvdm
 |-  ( <. F , P >. e. ( ~~>t ` J ) -> J e. dom ~~>t )
5 3 4 sylbi
 |-  ( F ( ~~>t ` J ) P -> J e. dom ~~>t )
6 2 5 sselid
 |-  ( F ( ~~>t ` J ) P -> J e. Top )