Step |
Hyp |
Ref |
Expression |
1 |
|
lnatex.b |
|- B = ( Base ` K ) |
2 |
|
lnatex.l |
|- .<_ = ( le ` K ) |
3 |
|
lnatex.a |
|- A = ( Atoms ` K ) |
4 |
|
lnatex.n |
|- N = ( Lines ` K ) |
5 |
|
lnatex.m |
|- M = ( pmap ` K ) |
6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
7 |
1 6 3 4 5
|
isline3 |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. r e. A E. s e. A ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) ) |
8 |
7
|
biimp3a |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> E. r e. A E. s e. A ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) |
9 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s e. A ) |
10 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> r =/= s ) |
11 |
10
|
necomd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s =/= r ) |
12 |
|
simpr |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> r = P ) |
13 |
11 12
|
neeqtrd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s =/= P ) |
14 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> K e. HL ) |
15 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> r e. A ) |
16 |
2 6 3
|
hlatlej2 |
|- ( ( K e. HL /\ r e. A /\ s e. A ) -> s .<_ ( r ( join ` K ) s ) ) |
17 |
14 15 9 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s .<_ ( r ( join ` K ) s ) ) |
18 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> X = ( r ( join ` K ) s ) ) |
19 |
17 18
|
breqtrrd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s .<_ X ) |
20 |
|
neeq1 |
|- ( q = s -> ( q =/= P <-> s =/= P ) ) |
21 |
|
breq1 |
|- ( q = s -> ( q .<_ X <-> s .<_ X ) ) |
22 |
20 21
|
anbi12d |
|- ( q = s -> ( ( q =/= P /\ q .<_ X ) <-> ( s =/= P /\ s .<_ X ) ) ) |
23 |
22
|
rspcev |
|- ( ( s e. A /\ ( s =/= P /\ s .<_ X ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
24 |
9 13 19 23
|
syl12anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
25 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r e. A ) |
26 |
|
simpr |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r =/= P ) |
27 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> K e. HL ) |
28 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> s e. A ) |
29 |
2 6 3
|
hlatlej1 |
|- ( ( K e. HL /\ r e. A /\ s e. A ) -> r .<_ ( r ( join ` K ) s ) ) |
30 |
27 25 28 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r .<_ ( r ( join ` K ) s ) ) |
31 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> X = ( r ( join ` K ) s ) ) |
32 |
30 31
|
breqtrrd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r .<_ X ) |
33 |
|
neeq1 |
|- ( q = r -> ( q =/= P <-> r =/= P ) ) |
34 |
|
breq1 |
|- ( q = r -> ( q .<_ X <-> r .<_ X ) ) |
35 |
33 34
|
anbi12d |
|- ( q = r -> ( ( q =/= P /\ q .<_ X ) <-> ( r =/= P /\ r .<_ X ) ) ) |
36 |
35
|
rspcev |
|- ( ( r e. A /\ ( r =/= P /\ r .<_ X ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
37 |
25 26 32 36
|
syl12anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
38 |
24 37
|
pm2.61dane |
|- ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
39 |
38
|
3exp |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> ( ( r e. A /\ s e. A ) -> ( ( r =/= s /\ X = ( r ( join ` K ) s ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) ) ) |
40 |
39
|
rexlimdvv |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> ( E. r e. A E. s e. A ( r =/= s /\ X = ( r ( join ` K ) s ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) ) |
41 |
8 40
|
mpd |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |