Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( T ` 0h ) = ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` 0h ) ) |
2 |
1
|
eqeq1d |
|- ( T = if ( T e. LinFn , T , ( ~H X. { 0 } ) ) -> ( ( T ` 0h ) = 0 <-> ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` 0h ) = 0 ) ) |
3 |
|
0lnfn |
|- ( ~H X. { 0 } ) e. LinFn |
4 |
3
|
elimel |
|- if ( T e. LinFn , T , ( ~H X. { 0 } ) ) e. LinFn |
5 |
4
|
lnfn0i |
|- ( if ( T e. LinFn , T , ( ~H X. { 0 } ) ) ` 0h ) = 0 |
6 |
2 5
|
dedth |
|- ( T e. LinFn -> ( T ` 0h ) = 0 ) |