| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnfnl.1 |
|- T e. LinFn |
| 2 |
|
ax-hv0cl |
|- 0h e. ~H |
| 3 |
1
|
lnfnfi |
|- T : ~H --> CC |
| 4 |
3
|
ffvelcdmi |
|- ( 0h e. ~H -> ( T ` 0h ) e. CC ) |
| 5 |
2 4
|
ax-mp |
|- ( T ` 0h ) e. CC |
| 6 |
5 5
|
pncan3oi |
|- ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) = ( T ` 0h ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
1
|
lnfnli |
|- ( ( 1 e. CC /\ 0h e. ~H /\ 0h e. ~H ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) ) |
| 9 |
7 2 2 8
|
mp3an |
|- ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) |
| 10 |
7 2
|
hvmulcli |
|- ( 1 .h 0h ) e. ~H |
| 11 |
|
ax-hvaddid |
|- ( ( 1 .h 0h ) e. ~H -> ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) ) |
| 12 |
10 11
|
ax-mp |
|- ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) |
| 13 |
|
ax-hvmulid |
|- ( 0h e. ~H -> ( 1 .h 0h ) = 0h ) |
| 14 |
2 13
|
ax-mp |
|- ( 1 .h 0h ) = 0h |
| 15 |
12 14
|
eqtri |
|- ( ( 1 .h 0h ) +h 0h ) = 0h |
| 16 |
15
|
fveq2i |
|- ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( T ` 0h ) |
| 17 |
9 16
|
eqtr3i |
|- ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) = ( T ` 0h ) |
| 18 |
5
|
mullidi |
|- ( 1 x. ( T ` 0h ) ) = ( T ` 0h ) |
| 19 |
18
|
oveq1i |
|- ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) = ( ( T ` 0h ) + ( T ` 0h ) ) |
| 20 |
17 19
|
eqtr3i |
|- ( T ` 0h ) = ( ( T ` 0h ) + ( T ` 0h ) ) |
| 21 |
20
|
oveq1i |
|- ( ( T ` 0h ) - ( T ` 0h ) ) = ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) |
| 22 |
5
|
subidi |
|- ( ( T ` 0h ) - ( T ` 0h ) ) = 0 |
| 23 |
21 22
|
eqtr3i |
|- ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) = 0 |
| 24 |
6 23
|
eqtr3i |
|- ( T ` 0h ) = 0 |