Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
|- T e. LinFn |
2 |
|
hvmulcl |
|- ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H ) |
3 |
1
|
lnfnaddi |
|- ( ( B e. ~H /\ ( A .h C ) e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
4 |
2 3
|
sylan2 |
|- ( ( B e. ~H /\ ( A e. CC /\ C e. ~H ) ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
5 |
4
|
3impb |
|- ( ( B e. ~H /\ A e. CC /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
6 |
5
|
3com12 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( T ` ( A .h C ) ) ) ) |
7 |
1
|
lnfnmuli |
|- ( ( A e. CC /\ C e. ~H ) -> ( T ` ( A .h C ) ) = ( A x. ( T ` C ) ) ) |
8 |
7
|
3adant2 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( A .h C ) ) = ( A x. ( T ` C ) ) ) |
9 |
8
|
oveq2d |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( T ` B ) + ( T ` ( A .h C ) ) ) = ( ( T ` B ) + ( A x. ( T ` C ) ) ) ) |
10 |
6 9
|
eqtrd |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) + ( A x. ( T ` C ) ) ) ) |