Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | |- T e. LinFn |
|
| Assertion | lnfnfi | |- T : ~H --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | |- T e. LinFn |
|
| 2 | lnfnf | |- ( T e. LinFn -> T : ~H --> CC ) |
|
| 3 | 1 2 | ax-mp | |- T : ~H --> CC |