Step |
Hyp |
Ref |
Expression |
1 |
|
ellnfn |
|- ( T e. LinFn <-> ( T : ~H --> CC /\ A. x e. CC A. y e. ~H A. z e. ~H ( T ` ( ( x .h y ) +h z ) ) = ( ( x x. ( T ` y ) ) + ( T ` z ) ) ) ) |
2 |
1
|
simprbi |
|- ( T e. LinFn -> A. x e. CC A. y e. ~H A. z e. ~H ( T ` ( ( x .h y ) +h z ) ) = ( ( x x. ( T ` y ) ) + ( T ` z ) ) ) |
3 |
|
oveq1 |
|- ( x = A -> ( x .h y ) = ( A .h y ) ) |
4 |
3
|
fvoveq1d |
|- ( x = A -> ( T ` ( ( x .h y ) +h z ) ) = ( T ` ( ( A .h y ) +h z ) ) ) |
5 |
|
oveq1 |
|- ( x = A -> ( x x. ( T ` y ) ) = ( A x. ( T ` y ) ) ) |
6 |
5
|
oveq1d |
|- ( x = A -> ( ( x x. ( T ` y ) ) + ( T ` z ) ) = ( ( A x. ( T ` y ) ) + ( T ` z ) ) ) |
7 |
4 6
|
eqeq12d |
|- ( x = A -> ( ( T ` ( ( x .h y ) +h z ) ) = ( ( x x. ( T ` y ) ) + ( T ` z ) ) <-> ( T ` ( ( A .h y ) +h z ) ) = ( ( A x. ( T ` y ) ) + ( T ` z ) ) ) ) |
8 |
|
oveq2 |
|- ( y = B -> ( A .h y ) = ( A .h B ) ) |
9 |
8
|
fvoveq1d |
|- ( y = B -> ( T ` ( ( A .h y ) +h z ) ) = ( T ` ( ( A .h B ) +h z ) ) ) |
10 |
|
fveq2 |
|- ( y = B -> ( T ` y ) = ( T ` B ) ) |
11 |
10
|
oveq2d |
|- ( y = B -> ( A x. ( T ` y ) ) = ( A x. ( T ` B ) ) ) |
12 |
11
|
oveq1d |
|- ( y = B -> ( ( A x. ( T ` y ) ) + ( T ` z ) ) = ( ( A x. ( T ` B ) ) + ( T ` z ) ) ) |
13 |
9 12
|
eqeq12d |
|- ( y = B -> ( ( T ` ( ( A .h y ) +h z ) ) = ( ( A x. ( T ` y ) ) + ( T ` z ) ) <-> ( T ` ( ( A .h B ) +h z ) ) = ( ( A x. ( T ` B ) ) + ( T ` z ) ) ) ) |
14 |
|
oveq2 |
|- ( z = C -> ( ( A .h B ) +h z ) = ( ( A .h B ) +h C ) ) |
15 |
14
|
fveq2d |
|- ( z = C -> ( T ` ( ( A .h B ) +h z ) ) = ( T ` ( ( A .h B ) +h C ) ) ) |
16 |
|
fveq2 |
|- ( z = C -> ( T ` z ) = ( T ` C ) ) |
17 |
16
|
oveq2d |
|- ( z = C -> ( ( A x. ( T ` B ) ) + ( T ` z ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) |
18 |
15 17
|
eqeq12d |
|- ( z = C -> ( ( T ` ( ( A .h B ) +h z ) ) = ( ( A x. ( T ` B ) ) + ( T ` z ) ) <-> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) ) |
19 |
7 13 18
|
rspc3v |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A. x e. CC A. y e. ~H A. z e. ~H ( T ` ( ( x .h y ) +h z ) ) = ( ( x x. ( T ` y ) ) + ( T ` z ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) ) |
20 |
2 19
|
syl5 |
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T e. LinFn -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) ) |
21 |
20
|
3expb |
|- ( ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) -> ( T e. LinFn -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) ) |
22 |
21
|
impcom |
|- ( ( T e. LinFn /\ ( A e. CC /\ ( B e. ~H /\ C e. ~H ) ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) |
23 |
22
|
anassrs |
|- ( ( ( T e. LinFn /\ A e. CC ) /\ ( B e. ~H /\ C e. ~H ) ) -> ( T ` ( ( A .h B ) +h C ) ) = ( ( A x. ( T ` B ) ) + ( T ` C ) ) ) |