| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnfnl.1 |
|- T e. LinFn |
| 2 |
|
ax-hv0cl |
|- 0h e. ~H |
| 3 |
1
|
lnfnli |
|- ( ( A e. CC /\ B e. ~H /\ 0h e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) ) |
| 4 |
2 3
|
mp3an3 |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) ) |
| 5 |
|
hvmulcl |
|- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
| 6 |
|
ax-hvaddid |
|- ( ( A .h B ) e. ~H -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
| 7 |
5 6
|
syl |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
| 8 |
7
|
fveq2d |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( T ` ( A .h B ) ) ) |
| 9 |
1
|
lnfn0i |
|- ( T ` 0h ) = 0 |
| 10 |
9
|
oveq2i |
|- ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) = ( ( A x. ( T ` B ) ) + 0 ) |
| 11 |
1
|
lnfnfi |
|- T : ~H --> CC |
| 12 |
11
|
ffvelcdmi |
|- ( B e. ~H -> ( T ` B ) e. CC ) |
| 13 |
|
mulcl |
|- ( ( A e. CC /\ ( T ` B ) e. CC ) -> ( A x. ( T ` B ) ) e. CC ) |
| 14 |
12 13
|
sylan2 |
|- ( ( A e. CC /\ B e. ~H ) -> ( A x. ( T ` B ) ) e. CC ) |
| 15 |
14
|
addridd |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( A x. ( T ` B ) ) + 0 ) = ( A x. ( T ` B ) ) ) |
| 16 |
10 15
|
eqtrid |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) = ( A x. ( T ` B ) ) ) |
| 17 |
4 8 16
|
3eqtr3d |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) |