Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
|- T e. LinFn |
2 |
|
ax-hv0cl |
|- 0h e. ~H |
3 |
1
|
lnfnli |
|- ( ( A e. CC /\ B e. ~H /\ 0h e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) ) |
4 |
2 3
|
mp3an3 |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) ) |
5 |
|
hvmulcl |
|- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
6 |
|
ax-hvaddid |
|- ( ( A .h B ) e. ~H -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
7 |
5 6
|
syl |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
8 |
7
|
fveq2d |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( T ` ( A .h B ) ) ) |
9 |
1
|
lnfn0i |
|- ( T ` 0h ) = 0 |
10 |
9
|
oveq2i |
|- ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) = ( ( A x. ( T ` B ) ) + 0 ) |
11 |
1
|
lnfnfi |
|- T : ~H --> CC |
12 |
11
|
ffvelrni |
|- ( B e. ~H -> ( T ` B ) e. CC ) |
13 |
|
mulcl |
|- ( ( A e. CC /\ ( T ` B ) e. CC ) -> ( A x. ( T ` B ) ) e. CC ) |
14 |
12 13
|
sylan2 |
|- ( ( A e. CC /\ B e. ~H ) -> ( A x. ( T ` B ) ) e. CC ) |
15 |
14
|
addid1d |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( A x. ( T ` B ) ) + 0 ) = ( A x. ( T ` B ) ) ) |
16 |
10 15
|
eqtrid |
|- ( ( A e. CC /\ B e. ~H ) -> ( ( A x. ( T ` B ) ) + ( T ` 0h ) ) = ( A x. ( T ` B ) ) ) |
17 |
4 8 16
|
3eqtr3d |
|- ( ( A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A x. ( T ` B ) ) ) |