Step |
Hyp |
Ref |
Expression |
1 |
|
lnfnl.1 |
|- T e. LinFn |
2 |
|
neg1cn |
|- -u 1 e. CC |
3 |
1
|
lnfnaddmuli |
|- ( ( -u 1 e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( -u 1 .h B ) ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
4 |
2 3
|
mp3an1 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( -u 1 .h B ) ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
5 |
|
hvsubval |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A -h B ) = ( A +h ( -u 1 .h B ) ) ) |
6 |
5
|
fveq2d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( T ` ( A +h ( -u 1 .h B ) ) ) ) |
7 |
1
|
lnfnfi |
|- T : ~H --> CC |
8 |
7
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. CC ) |
9 |
7
|
ffvelrni |
|- ( B e. ~H -> ( T ` B ) e. CC ) |
10 |
|
mulm1 |
|- ( ( T ` B ) e. CC -> ( -u 1 x. ( T ` B ) ) = -u ( T ` B ) ) |
11 |
10
|
oveq2d |
|- ( ( T ` B ) e. CC -> ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) = ( ( T ` A ) + -u ( T ` B ) ) ) |
12 |
11
|
adantl |
|- ( ( ( T ` A ) e. CC /\ ( T ` B ) e. CC ) -> ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) = ( ( T ` A ) + -u ( T ` B ) ) ) |
13 |
|
negsub |
|- ( ( ( T ` A ) e. CC /\ ( T ` B ) e. CC ) -> ( ( T ` A ) + -u ( T ` B ) ) = ( ( T ` A ) - ( T ` B ) ) ) |
14 |
12 13
|
eqtr2d |
|- ( ( ( T ` A ) e. CC /\ ( T ` B ) e. CC ) -> ( ( T ` A ) - ( T ` B ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
15 |
8 9 14
|
syl2an |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( T ` A ) - ( T ` B ) ) = ( ( T ` A ) + ( -u 1 x. ( T ` B ) ) ) ) |
16 |
4 6 15
|
3eqtr4d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) - ( T ` B ) ) ) |