Step |
Hyp |
Ref |
Expression |
1 |
|
brlmic |
|- ( R ~=m S <-> ( R LMIso S ) =/= (/) ) |
2 |
|
n0 |
|- ( ( R LMIso S ) =/= (/) <-> E. a a e. ( R LMIso S ) ) |
3 |
1 2
|
bitri |
|- ( R ~=m S <-> E. a a e. ( R LMIso S ) ) |
4 |
|
lmimlmhm |
|- ( a e. ( R LMIso S ) -> a e. ( R LMHom S ) ) |
5 |
4
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> a e. ( R LMHom S ) ) |
6 |
|
simpr |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> R e. LNoeM ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
9 |
7 8
|
lmimf1o |
|- ( a e. ( R LMIso S ) -> a : ( Base ` R ) -1-1-onto-> ( Base ` S ) ) |
10 |
|
f1ofo |
|- ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> a : ( Base ` R ) -onto-> ( Base ` S ) ) |
11 |
|
forn |
|- ( a : ( Base ` R ) -onto-> ( Base ` S ) -> ran a = ( Base ` S ) ) |
12 |
9 10 11
|
3syl |
|- ( a e. ( R LMIso S ) -> ran a = ( Base ` S ) ) |
13 |
12
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> ran a = ( Base ` S ) ) |
14 |
8
|
lnmepi |
|- ( ( a e. ( R LMHom S ) /\ R e. LNoeM /\ ran a = ( Base ` S ) ) -> S e. LNoeM ) |
15 |
5 6 13 14
|
syl3anc |
|- ( ( a e. ( R LMIso S ) /\ R e. LNoeM ) -> S e. LNoeM ) |
16 |
|
islmim2 |
|- ( a e. ( R LMIso S ) <-> ( a e. ( R LMHom S ) /\ `' a e. ( S LMHom R ) ) ) |
17 |
16
|
simprbi |
|- ( a e. ( R LMIso S ) -> `' a e. ( S LMHom R ) ) |
18 |
17
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> `' a e. ( S LMHom R ) ) |
19 |
|
simpr |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> S e. LNoeM ) |
20 |
|
dfdm4 |
|- dom a = ran `' a |
21 |
|
f1odm |
|- ( a : ( Base ` R ) -1-1-onto-> ( Base ` S ) -> dom a = ( Base ` R ) ) |
22 |
9 21
|
syl |
|- ( a e. ( R LMIso S ) -> dom a = ( Base ` R ) ) |
23 |
22
|
adantr |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> dom a = ( Base ` R ) ) |
24 |
20 23
|
eqtr3id |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> ran `' a = ( Base ` R ) ) |
25 |
7
|
lnmepi |
|- ( ( `' a e. ( S LMHom R ) /\ S e. LNoeM /\ ran `' a = ( Base ` R ) ) -> R e. LNoeM ) |
26 |
18 19 24 25
|
syl3anc |
|- ( ( a e. ( R LMIso S ) /\ S e. LNoeM ) -> R e. LNoeM ) |
27 |
15 26
|
impbida |
|- ( a e. ( R LMIso S ) -> ( R e. LNoeM <-> S e. LNoeM ) ) |
28 |
27
|
exlimiv |
|- ( E. a a e. ( R LMIso S ) -> ( R e. LNoeM <-> S e. LNoeM ) ) |
29 |
3 28
|
sylbi |
|- ( R ~=m S -> ( R e. LNoeM <-> S e. LNoeM ) ) |