Step |
Hyp |
Ref |
Expression |
1 |
|
lnmlssfg.s |
|- S = ( LSubSp ` M ) |
2 |
|
lnmlssfg.r |
|- R = ( M |`s U ) |
3 |
|
lnmlmod |
|- ( M e. LNoeM -> M e. LMod ) |
4 |
2 1
|
lsslmod |
|- ( ( M e. LMod /\ U e. S ) -> R e. LMod ) |
5 |
3 4
|
sylan |
|- ( ( M e. LNoeM /\ U e. S ) -> R e. LMod ) |
6 |
2
|
oveq1i |
|- ( R |`s a ) = ( ( M |`s U ) |`s a ) |
7 |
|
simplr |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> U e. S ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
|
eqid |
|- ( LSubSp ` R ) = ( LSubSp ` R ) |
10 |
8 9
|
lssss |
|- ( a e. ( LSubSp ` R ) -> a C_ ( Base ` R ) ) |
11 |
10
|
adantl |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> a C_ ( Base ` R ) ) |
12 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
13 |
12 1
|
lssss |
|- ( U e. S -> U C_ ( Base ` M ) ) |
14 |
2 12
|
ressbas2 |
|- ( U C_ ( Base ` M ) -> U = ( Base ` R ) ) |
15 |
13 14
|
syl |
|- ( U e. S -> U = ( Base ` R ) ) |
16 |
15
|
ad2antlr |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> U = ( Base ` R ) ) |
17 |
11 16
|
sseqtrrd |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> a C_ U ) |
18 |
|
ressabs |
|- ( ( U e. S /\ a C_ U ) -> ( ( M |`s U ) |`s a ) = ( M |`s a ) ) |
19 |
7 17 18
|
syl2anc |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( ( M |`s U ) |`s a ) = ( M |`s a ) ) |
20 |
6 19
|
eqtrid |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( R |`s a ) = ( M |`s a ) ) |
21 |
|
simpll |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> M e. LNoeM ) |
22 |
2 1 9
|
lsslss |
|- ( ( M e. LMod /\ U e. S ) -> ( a e. ( LSubSp ` R ) <-> ( a e. S /\ a C_ U ) ) ) |
23 |
3 22
|
sylan |
|- ( ( M e. LNoeM /\ U e. S ) -> ( a e. ( LSubSp ` R ) <-> ( a e. S /\ a C_ U ) ) ) |
24 |
23
|
simprbda |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> a e. S ) |
25 |
|
eqid |
|- ( M |`s a ) = ( M |`s a ) |
26 |
1 25
|
lnmlssfg |
|- ( ( M e. LNoeM /\ a e. S ) -> ( M |`s a ) e. LFinGen ) |
27 |
21 24 26
|
syl2anc |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( M |`s a ) e. LFinGen ) |
28 |
20 27
|
eqeltrd |
|- ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( R |`s a ) e. LFinGen ) |
29 |
28
|
ralrimiva |
|- ( ( M e. LNoeM /\ U e. S ) -> A. a e. ( LSubSp ` R ) ( R |`s a ) e. LFinGen ) |
30 |
9
|
islnm |
|- ( R e. LNoeM <-> ( R e. LMod /\ A. a e. ( LSubSp ` R ) ( R |`s a ) e. LFinGen ) ) |
31 |
5 29 30
|
sylanbrc |
|- ( ( M e. LNoeM /\ U e. S ) -> R e. LNoeM ) |