Metamath Proof Explorer


Theorem lnmlsslnm

Description: All submodules of a Noetherian module are Noetherian. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lnmlssfg.s
|- S = ( LSubSp ` M )
lnmlssfg.r
|- R = ( M |`s U )
Assertion lnmlsslnm
|- ( ( M e. LNoeM /\ U e. S ) -> R e. LNoeM )

Proof

Step Hyp Ref Expression
1 lnmlssfg.s
 |-  S = ( LSubSp ` M )
2 lnmlssfg.r
 |-  R = ( M |`s U )
3 lnmlmod
 |-  ( M e. LNoeM -> M e. LMod )
4 2 1 lsslmod
 |-  ( ( M e. LMod /\ U e. S ) -> R e. LMod )
5 3 4 sylan
 |-  ( ( M e. LNoeM /\ U e. S ) -> R e. LMod )
6 2 oveq1i
 |-  ( R |`s a ) = ( ( M |`s U ) |`s a )
7 simplr
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> U e. S )
8 eqid
 |-  ( Base ` R ) = ( Base ` R )
9 eqid
 |-  ( LSubSp ` R ) = ( LSubSp ` R )
10 8 9 lssss
 |-  ( a e. ( LSubSp ` R ) -> a C_ ( Base ` R ) )
11 10 adantl
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> a C_ ( Base ` R ) )
12 eqid
 |-  ( Base ` M ) = ( Base ` M )
13 12 1 lssss
 |-  ( U e. S -> U C_ ( Base ` M ) )
14 2 12 ressbas2
 |-  ( U C_ ( Base ` M ) -> U = ( Base ` R ) )
15 13 14 syl
 |-  ( U e. S -> U = ( Base ` R ) )
16 15 ad2antlr
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> U = ( Base ` R ) )
17 11 16 sseqtrrd
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> a C_ U )
18 ressabs
 |-  ( ( U e. S /\ a C_ U ) -> ( ( M |`s U ) |`s a ) = ( M |`s a ) )
19 7 17 18 syl2anc
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( ( M |`s U ) |`s a ) = ( M |`s a ) )
20 6 19 eqtrid
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( R |`s a ) = ( M |`s a ) )
21 simpll
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> M e. LNoeM )
22 2 1 9 lsslss
 |-  ( ( M e. LMod /\ U e. S ) -> ( a e. ( LSubSp ` R ) <-> ( a e. S /\ a C_ U ) ) )
23 3 22 sylan
 |-  ( ( M e. LNoeM /\ U e. S ) -> ( a e. ( LSubSp ` R ) <-> ( a e. S /\ a C_ U ) ) )
24 23 simprbda
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> a e. S )
25 eqid
 |-  ( M |`s a ) = ( M |`s a )
26 1 25 lnmlssfg
 |-  ( ( M e. LNoeM /\ a e. S ) -> ( M |`s a ) e. LFinGen )
27 21 24 26 syl2anc
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( M |`s a ) e. LFinGen )
28 20 27 eqeltrd
 |-  ( ( ( M e. LNoeM /\ U e. S ) /\ a e. ( LSubSp ` R ) ) -> ( R |`s a ) e. LFinGen )
29 28 ralrimiva
 |-  ( ( M e. LNoeM /\ U e. S ) -> A. a e. ( LSubSp ` R ) ( R |`s a ) e. LFinGen )
30 9 islnm
 |-  ( R e. LNoeM <-> ( R e. LMod /\ A. a e. ( LSubSp ` R ) ( R |`s a ) e. LFinGen ) )
31 5 29 30 sylanbrc
 |-  ( ( M e. LNoeM /\ U e. S ) -> R e. LNoeM )