Step |
Hyp |
Ref |
Expression |
1 |
|
lnnat.j |
|- .\/ = ( join ` K ) |
2 |
|
lnnat.a |
|- A = ( Atoms ` K ) |
3 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. HL ) |
4 |
|
simpl2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A ) |
5 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
6 |
|
eqid |
|- ( |
7 |
5 6 2
|
atcvr0 |
|- ( ( K e. HL /\ P e. A ) -> ( 0. ` K ) ( |
8 |
3 4 7
|
syl2anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( 0. ` K ) ( |
9 |
1 6 2
|
atcvr1 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> P ( |
10 |
9
|
biimpa |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P ( |
11 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
12 5
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. ( Base ` K ) ) |
14 |
3 11 13
|
3syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( 0. ` K ) e. ( Base ` K ) ) |
15 |
12 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
16 |
4 15
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) ) |
17 |
3
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. Lat ) |
18 |
|
simpl3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A ) |
19 |
12 2
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
20 |
18 19
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) ) |
21 |
12 1
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
22 |
17 16 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
23 |
12 6
|
cvrntr |
|- ( ( K e. HL /\ ( ( 0. ` K ) e. ( Base ` K ) /\ P e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( ( 0. ` K ) ( -. ( 0. ` K ) ( |
24 |
3 14 16 22 23
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( ( ( 0. ` K ) ( -. ( 0. ` K ) ( |
25 |
8 10 24
|
mp2and |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> -. ( 0. ` K ) ( |
26 |
|
simpll1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) /\ ( P .\/ Q ) e. A ) -> K e. HL ) |
27 |
5 6 2
|
atcvr0 |
|- ( ( K e. HL /\ ( P .\/ Q ) e. A ) -> ( 0. ` K ) ( |
28 |
26 27
|
sylancom |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) /\ ( P .\/ Q ) e. A ) -> ( 0. ` K ) ( |
29 |
25 28
|
mtand |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> -. ( P .\/ Q ) e. A ) |
30 |
29
|
ex |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q -> -. ( P .\/ Q ) e. A ) ) |
31 |
1 2
|
hlatjidm |
|- ( ( K e. HL /\ P e. A ) -> ( P .\/ P ) = P ) |
32 |
31
|
3adant3 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ P ) = P ) |
33 |
|
simp2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> P e. A ) |
34 |
32 33
|
eqeltrd |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ P ) e. A ) |
35 |
|
oveq2 |
|- ( P = Q -> ( P .\/ P ) = ( P .\/ Q ) ) |
36 |
35
|
eleq1d |
|- ( P = Q -> ( ( P .\/ P ) e. A <-> ( P .\/ Q ) e. A ) ) |
37 |
34 36
|
syl5ibcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P = Q -> ( P .\/ Q ) e. A ) ) |
38 |
37
|
necon3bd |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( -. ( P .\/ Q ) e. A -> P =/= Q ) ) |
39 |
30 38
|
impbid |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P =/= Q <-> -. ( P .\/ Q ) e. A ) ) |