| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lno0.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
lno0.2 |
|- Y = ( BaseSet ` W ) |
| 3 |
|
lno0.5 |
|- Q = ( 0vec ` U ) |
| 4 |
|
lno0.z |
|- Z = ( 0vec ` W ) |
| 5 |
|
lno0.7 |
|- L = ( U LnOp W ) |
| 6 |
|
neg1cn |
|- -u 1 e. CC |
| 7 |
6
|
a1i |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> -u 1 e. CC ) |
| 8 |
1 3
|
nvzcl |
|- ( U e. NrmCVec -> Q e. X ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> Q e. X ) |
| 10 |
7 9 9
|
3jca |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( -u 1 e. CC /\ Q e. X /\ Q e. X ) ) |
| 11 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
| 12 |
|
eqid |
|- ( +v ` W ) = ( +v ` W ) |
| 13 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
| 14 |
|
eqid |
|- ( .sOLD ` W ) = ( .sOLD ` W ) |
| 15 |
1 2 11 12 13 14 5
|
lnolin |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( -u 1 e. CC /\ Q e. X /\ Q e. X ) ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) ) |
| 16 |
10 15
|
mpdan |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) ) |
| 17 |
1 11 13 3
|
nvlinv |
|- ( ( U e. NrmCVec /\ Q e. X ) -> ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) = Q ) |
| 18 |
8 17
|
mpdan |
|- ( U e. NrmCVec -> ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) = Q ) |
| 19 |
18
|
fveq2d |
|- ( U e. NrmCVec -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( T ` Q ) ) |
| 20 |
19
|
3ad2ant1 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` ( ( -u 1 ( .sOLD ` U ) Q ) ( +v ` U ) Q ) ) = ( T ` Q ) ) |
| 21 |
|
simp2 |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> W e. NrmCVec ) |
| 22 |
1 2 5
|
lnof |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> Y ) |
| 23 |
22 9
|
ffvelcdmd |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Q ) e. Y ) |
| 24 |
2 12 14 4
|
nvlinv |
|- ( ( W e. NrmCVec /\ ( T ` Q ) e. Y ) -> ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) = Z ) |
| 25 |
21 23 24
|
syl2anc |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( ( -u 1 ( .sOLD ` W ) ( T ` Q ) ) ( +v ` W ) ( T ` Q ) ) = Z ) |
| 26 |
16 20 25
|
3eqtr3d |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Q ) = Z ) |