Metamath Proof Explorer


Theorem lnocni

Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses blocni.8
|- C = ( IndMet ` U )
blocni.d
|- D = ( IndMet ` W )
blocni.j
|- J = ( MetOpen ` C )
blocni.k
|- K = ( MetOpen ` D )
blocni.4
|- L = ( U LnOp W )
blocni.5
|- B = ( U BLnOp W )
blocni.u
|- U e. NrmCVec
blocni.w
|- W e. NrmCVec
blocni.l
|- T e. L
lnocni.1
|- X = ( BaseSet ` U )
Assertion lnocni
|- ( ( P e. X /\ T e. ( ( J CnP K ) ` P ) ) -> T e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 blocni.8
 |-  C = ( IndMet ` U )
2 blocni.d
 |-  D = ( IndMet ` W )
3 blocni.j
 |-  J = ( MetOpen ` C )
4 blocni.k
 |-  K = ( MetOpen ` D )
5 blocni.4
 |-  L = ( U LnOp W )
6 blocni.5
 |-  B = ( U BLnOp W )
7 blocni.u
 |-  U e. NrmCVec
8 blocni.w
 |-  W e. NrmCVec
9 blocni.l
 |-  T e. L
10 lnocni.1
 |-  X = ( BaseSet ` U )
11 1 2 3 4 5 6 7 8 9 10 blocnilem
 |-  ( ( P e. X /\ T e. ( ( J CnP K ) ` P ) ) -> T e. B )
12 1 2 3 4 5 6 7 8 9 blocni
 |-  ( T e. ( J Cn K ) <-> T e. B )
13 11 12 sylibr
 |-  ( ( P e. X /\ T e. ( ( J CnP K ) ` P ) ) -> T e. ( J Cn K ) )