Description: If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of Kreyszig p. 97. (Contributed by NM, 18-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | blocni.8 | |- C = ( IndMet ` U ) |
|
| blocni.d | |- D = ( IndMet ` W ) |
||
| blocni.j | |- J = ( MetOpen ` C ) |
||
| blocni.k | |- K = ( MetOpen ` D ) |
||
| blocni.4 | |- L = ( U LnOp W ) |
||
| blocni.5 | |- B = ( U BLnOp W ) |
||
| blocni.u | |- U e. NrmCVec |
||
| blocni.w | |- W e. NrmCVec |
||
| blocni.l | |- T e. L |
||
| lnocni.1 | |- X = ( BaseSet ` U ) |
||
| Assertion | lnocni | |- ( ( P e. X /\ T e. ( ( J CnP K ) ` P ) ) -> T e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blocni.8 | |- C = ( IndMet ` U ) |
|
| 2 | blocni.d | |- D = ( IndMet ` W ) |
|
| 3 | blocni.j | |- J = ( MetOpen ` C ) |
|
| 4 | blocni.k | |- K = ( MetOpen ` D ) |
|
| 5 | blocni.4 | |- L = ( U LnOp W ) |
|
| 6 | blocni.5 | |- B = ( U BLnOp W ) |
|
| 7 | blocni.u | |- U e. NrmCVec |
|
| 8 | blocni.w | |- W e. NrmCVec |
|
| 9 | blocni.l | |- T e. L |
|
| 10 | lnocni.1 | |- X = ( BaseSet ` U ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 10 | blocnilem | |- ( ( P e. X /\ T e. ( ( J CnP K ) ` P ) ) -> T e. B ) |
| 12 | 1 2 3 4 5 6 7 8 9 | blocni | |- ( T e. ( J Cn K ) <-> T e. B ) |
| 13 | 11 12 | sylibr | |- ( ( P e. X /\ T e. ( ( J CnP K ) ` P ) ) -> T e. ( J Cn K ) ) |