Step |
Hyp |
Ref |
Expression |
1 |
|
lnoval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
lnoval.2 |
|- Y = ( BaseSet ` W ) |
3 |
|
lnoval.3 |
|- G = ( +v ` U ) |
4 |
|
lnoval.4 |
|- H = ( +v ` W ) |
5 |
|
lnoval.5 |
|- R = ( .sOLD ` U ) |
6 |
|
lnoval.6 |
|- S = ( .sOLD ` W ) |
7 |
|
lnoval.7 |
|- L = ( U LnOp W ) |
8 |
1 2 3 4 5 6 7
|
islno |
|- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. L <-> ( T : X --> Y /\ A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) ) ) |
9 |
8
|
biimp3a |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T : X --> Y /\ A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) ) |
10 |
9
|
simprd |
|- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) ) |
11 |
|
oveq1 |
|- ( u = A -> ( u R w ) = ( A R w ) ) |
12 |
11
|
fvoveq1d |
|- ( u = A -> ( T ` ( ( u R w ) G t ) ) = ( T ` ( ( A R w ) G t ) ) ) |
13 |
|
oveq1 |
|- ( u = A -> ( u S ( T ` w ) ) = ( A S ( T ` w ) ) ) |
14 |
13
|
oveq1d |
|- ( u = A -> ( ( u S ( T ` w ) ) H ( T ` t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) ) |
15 |
12 14
|
eqeq12d |
|- ( u = A -> ( ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) <-> ( T ` ( ( A R w ) G t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) ) ) |
16 |
|
oveq2 |
|- ( w = B -> ( A R w ) = ( A R B ) ) |
17 |
16
|
fvoveq1d |
|- ( w = B -> ( T ` ( ( A R w ) G t ) ) = ( T ` ( ( A R B ) G t ) ) ) |
18 |
|
fveq2 |
|- ( w = B -> ( T ` w ) = ( T ` B ) ) |
19 |
18
|
oveq2d |
|- ( w = B -> ( A S ( T ` w ) ) = ( A S ( T ` B ) ) ) |
20 |
19
|
oveq1d |
|- ( w = B -> ( ( A S ( T ` w ) ) H ( T ` t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) ) |
21 |
17 20
|
eqeq12d |
|- ( w = B -> ( ( T ` ( ( A R w ) G t ) ) = ( ( A S ( T ` w ) ) H ( T ` t ) ) <-> ( T ` ( ( A R B ) G t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) ) ) |
22 |
|
oveq2 |
|- ( t = C -> ( ( A R B ) G t ) = ( ( A R B ) G C ) ) |
23 |
22
|
fveq2d |
|- ( t = C -> ( T ` ( ( A R B ) G t ) ) = ( T ` ( ( A R B ) G C ) ) ) |
24 |
|
fveq2 |
|- ( t = C -> ( T ` t ) = ( T ` C ) ) |
25 |
24
|
oveq2d |
|- ( t = C -> ( ( A S ( T ` B ) ) H ( T ` t ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) |
26 |
23 25
|
eqeq12d |
|- ( t = C -> ( ( T ` ( ( A R B ) G t ) ) = ( ( A S ( T ` B ) ) H ( T ` t ) ) <-> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) ) |
27 |
15 21 26
|
rspc3v |
|- ( ( A e. CC /\ B e. X /\ C e. X ) -> ( A. u e. CC A. w e. X A. t e. X ( T ` ( ( u R w ) G t ) ) = ( ( u S ( T ` w ) ) H ( T ` t ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) ) |
28 |
10 27
|
mpan9 |
|- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( T ` ( ( A R B ) G C ) ) = ( ( A S ( T ` B ) ) H ( T ` C ) ) ) |