| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
ax-hv0cl |
|- 0h e. ~H |
| 3 |
1 2
|
hvmulcli |
|- ( 1 .h 0h ) e. ~H |
| 4 |
|
ax-hvaddid |
|- ( ( 1 .h 0h ) e. ~H -> ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) ) |
| 5 |
3 4
|
ax-mp |
|- ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) |
| 6 |
|
ax-hvmulid |
|- ( 0h e. ~H -> ( 1 .h 0h ) = 0h ) |
| 7 |
2 6
|
ax-mp |
|- ( 1 .h 0h ) = 0h |
| 8 |
5 7
|
eqtri |
|- ( ( 1 .h 0h ) +h 0h ) = 0h |
| 9 |
8
|
fveq2i |
|- ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( T ` 0h ) |
| 10 |
|
lnopl |
|- ( ( ( T e. LinOp /\ 1 e. CC ) /\ ( 0h e. ~H /\ 0h e. ~H ) ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 11 |
2 2 10
|
mpanr12 |
|- ( ( T e. LinOp /\ 1 e. CC ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 12 |
1 11
|
mpan2 |
|- ( T e. LinOp -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 13 |
9 12
|
eqtr3id |
|- ( T e. LinOp -> ( T ` 0h ) = ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) ) |
| 14 |
|
lnopf |
|- ( T e. LinOp -> T : ~H --> ~H ) |
| 15 |
|
ffvelcdm |
|- ( ( T : ~H --> ~H /\ 0h e. ~H ) -> ( T ` 0h ) e. ~H ) |
| 16 |
2 15
|
mpan2 |
|- ( T : ~H --> ~H -> ( T ` 0h ) e. ~H ) |
| 17 |
14 16
|
syl |
|- ( T e. LinOp -> ( T ` 0h ) e. ~H ) |
| 18 |
|
ax-hvmulid |
|- ( ( T ` 0h ) e. ~H -> ( 1 .h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 19 |
17 18
|
syl |
|- ( T e. LinOp -> ( 1 .h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 20 |
19
|
oveq1d |
|- ( T e. LinOp -> ( ( 1 .h ( T ` 0h ) ) +h ( T ` 0h ) ) = ( ( T ` 0h ) +h ( T ` 0h ) ) ) |
| 21 |
13 20
|
eqtrd |
|- ( T e. LinOp -> ( T ` 0h ) = ( ( T ` 0h ) +h ( T ` 0h ) ) ) |
| 22 |
21
|
oveq1d |
|- ( T e. LinOp -> ( ( T ` 0h ) -h ( T ` 0h ) ) = ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) ) |
| 23 |
|
hvsubid |
|- ( ( T ` 0h ) e. ~H -> ( ( T ` 0h ) -h ( T ` 0h ) ) = 0h ) |
| 24 |
17 23
|
syl |
|- ( T e. LinOp -> ( ( T ` 0h ) -h ( T ` 0h ) ) = 0h ) |
| 25 |
|
hvpncan |
|- ( ( ( T ` 0h ) e. ~H /\ ( T ` 0h ) e. ~H ) -> ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 26 |
25
|
anidms |
|- ( ( T ` 0h ) e. ~H -> ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 27 |
17 26
|
syl |
|- ( T e. LinOp -> ( ( ( T ` 0h ) +h ( T ` 0h ) ) -h ( T ` 0h ) ) = ( T ` 0h ) ) |
| 28 |
22 24 27
|
3eqtr3rd |
|- ( T e. LinOp -> ( T ` 0h ) = 0h ) |