| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lnopl.1 |  |-  T e. LinOp | 
						
							| 2 |  | ax-1cn |  |-  1 e. CC | 
						
							| 3 | 1 | lnopli |  |-  ( ( 1 e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 .h ( T ` A ) ) +h ( T ` B ) ) ) | 
						
							| 4 | 2 3 | mp3an1 |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 .h ( T ` A ) ) +h ( T ` B ) ) ) | 
						
							| 5 |  | ax-hvmulid |  |-  ( A e. ~H -> ( 1 .h A ) = A ) | 
						
							| 6 | 5 | fvoveq1d |  |-  ( A e. ~H -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) | 
						
							| 8 | 1 | lnopfi |  |-  T : ~H --> ~H | 
						
							| 9 | 8 | ffvelcdmi |  |-  ( A e. ~H -> ( T ` A ) e. ~H ) | 
						
							| 10 |  | ax-hvmulid |  |-  ( ( T ` A ) e. ~H -> ( 1 .h ( T ` A ) ) = ( T ` A ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( A e. ~H -> ( 1 .h ( T ` A ) ) = ( T ` A ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( 1 .h ( T ` A ) ) = ( T ` A ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( ( 1 .h ( T ` A ) ) +h ( T ` B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) | 
						
							| 14 | 4 7 13 | 3eqtr3d |  |-  ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |