Metamath Proof Explorer


Theorem lnopaddmuli

Description: Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005) (New usage is discouraged.)

Ref Expression
Hypothesis lnopl.1
|- T e. LinOp
Assertion lnopaddmuli
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) +h ( A .h ( T ` C ) ) ) )

Proof

Step Hyp Ref Expression
1 lnopl.1
 |-  T e. LinOp
2 hvmulcl
 |-  ( ( A e. CC /\ C e. ~H ) -> ( A .h C ) e. ~H )
3 1 lnopaddi
 |-  ( ( B e. ~H /\ ( A .h C ) e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) +h ( T ` ( A .h C ) ) ) )
4 2 3 sylan2
 |-  ( ( B e. ~H /\ ( A e. CC /\ C e. ~H ) ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) +h ( T ` ( A .h C ) ) ) )
5 4 3impb
 |-  ( ( B e. ~H /\ A e. CC /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) +h ( T ` ( A .h C ) ) ) )
6 5 3com12
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) +h ( T ` ( A .h C ) ) ) )
7 1 lnopmuli
 |-  ( ( A e. CC /\ C e. ~H ) -> ( T ` ( A .h C ) ) = ( A .h ( T ` C ) ) )
8 7 3adant2
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( A .h C ) ) = ( A .h ( T ` C ) ) )
9 8 oveq2d
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( T ` B ) +h ( T ` ( A .h C ) ) ) = ( ( T ` B ) +h ( A .h ( T ` C ) ) ) )
10 6 9 eqtrd
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( T ` ( B +h ( A .h C ) ) ) = ( ( T ` B ) +h ( A .h ( T ` C ) ) ) )