Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | lnopcnre | |- ( T e. LinOp -> ( T e. ContOp <-> ( normop ` T ) e. RR ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopcnbd | |- ( T e. LinOp -> ( T e. ContOp <-> T e. BndLinOp ) ) |
|
2 | elbdop2 | |- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) ) |
|
3 | 2 | baib | |- ( T e. LinOp -> ( T e. BndLinOp <-> ( normop ` T ) e. RR ) ) |
4 | 1 3 | bitrd | |- ( T e. LinOp -> ( T e. ContOp <-> ( normop ` T ) e. RR ) ) |