Description: A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnopcnre | |- ( T e. LinOp -> ( T e. ContOp <-> ( normop ` T ) e. RR ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lnopcnbd | |- ( T e. LinOp -> ( T e. ContOp <-> T e. BndLinOp ) ) | |
| 2 | elbdop2 | |- ( T e. BndLinOp <-> ( T e. LinOp /\ ( normop ` T ) e. RR ) ) | |
| 3 | 2 | baib | |- ( T e. LinOp -> ( T e. BndLinOp <-> ( normop ` T ) e. RR ) ) | 
| 4 | 1 3 | bitrd | |- ( T e. LinOp -> ( T e. ContOp <-> ( normop ` T ) e. RR ) ) |