| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopco.1 |
|- S e. LinOp |
| 2 |
|
lnopco.2 |
|- T e. LinOp |
| 3 |
|
coeq2 |
|- ( T = 0hop -> ( S o. T ) = ( S o. 0hop ) ) |
| 4 |
|
0lnop |
|- 0hop e. LinOp |
| 5 |
1 4
|
lnopcoi |
|- ( S o. 0hop ) e. LinOp |
| 6 |
5
|
lnopfi |
|- ( S o. 0hop ) : ~H --> ~H |
| 7 |
|
ffn |
|- ( ( S o. 0hop ) : ~H --> ~H -> ( S o. 0hop ) Fn ~H ) |
| 8 |
6 7
|
ax-mp |
|- ( S o. 0hop ) Fn ~H |
| 9 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 10 |
|
ffn |
|- ( 0hop : ~H --> ~H -> 0hop Fn ~H ) |
| 11 |
9 10
|
ax-mp |
|- 0hop Fn ~H |
| 12 |
|
eqfnfv |
|- ( ( ( S o. 0hop ) Fn ~H /\ 0hop Fn ~H ) -> ( ( S o. 0hop ) = 0hop <-> A. x e. ~H ( ( S o. 0hop ) ` x ) = ( 0hop ` x ) ) ) |
| 13 |
8 11 12
|
mp2an |
|- ( ( S o. 0hop ) = 0hop <-> A. x e. ~H ( ( S o. 0hop ) ` x ) = ( 0hop ` x ) ) |
| 14 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
| 15 |
14
|
fveq2d |
|- ( x e. ~H -> ( S ` ( 0hop ` x ) ) = ( S ` 0h ) ) |
| 16 |
1
|
lnop0i |
|- ( S ` 0h ) = 0h |
| 17 |
15 16
|
eqtrdi |
|- ( x e. ~H -> ( S ` ( 0hop ` x ) ) = 0h ) |
| 18 |
1
|
lnopfi |
|- S : ~H --> ~H |
| 19 |
18 9
|
hocoi |
|- ( x e. ~H -> ( ( S o. 0hop ) ` x ) = ( S ` ( 0hop ` x ) ) ) |
| 20 |
17 19 14
|
3eqtr4d |
|- ( x e. ~H -> ( ( S o. 0hop ) ` x ) = ( 0hop ` x ) ) |
| 21 |
13 20
|
mprgbir |
|- ( S o. 0hop ) = 0hop |
| 22 |
3 21
|
eqtrdi |
|- ( T = 0hop -> ( S o. T ) = 0hop ) |
| 23 |
2
|
nmlnop0iHIL |
|- ( ( normop ` T ) = 0 <-> T = 0hop ) |
| 24 |
1 2
|
lnopcoi |
|- ( S o. T ) e. LinOp |
| 25 |
24
|
nmlnop0iHIL |
|- ( ( normop ` ( S o. T ) ) = 0 <-> ( S o. T ) = 0hop ) |
| 26 |
22 23 25
|
3imtr4i |
|- ( ( normop ` T ) = 0 -> ( normop ` ( S o. T ) ) = 0 ) |