Step |
Hyp |
Ref |
Expression |
1 |
|
lnopco.1 |
|- S e. LinOp |
2 |
|
lnopco.2 |
|- T e. LinOp |
3 |
|
coeq2 |
|- ( T = 0hop -> ( S o. T ) = ( S o. 0hop ) ) |
4 |
|
0lnop |
|- 0hop e. LinOp |
5 |
1 4
|
lnopcoi |
|- ( S o. 0hop ) e. LinOp |
6 |
5
|
lnopfi |
|- ( S o. 0hop ) : ~H --> ~H |
7 |
|
ffn |
|- ( ( S o. 0hop ) : ~H --> ~H -> ( S o. 0hop ) Fn ~H ) |
8 |
6 7
|
ax-mp |
|- ( S o. 0hop ) Fn ~H |
9 |
|
ho0f |
|- 0hop : ~H --> ~H |
10 |
|
ffn |
|- ( 0hop : ~H --> ~H -> 0hop Fn ~H ) |
11 |
9 10
|
ax-mp |
|- 0hop Fn ~H |
12 |
|
eqfnfv |
|- ( ( ( S o. 0hop ) Fn ~H /\ 0hop Fn ~H ) -> ( ( S o. 0hop ) = 0hop <-> A. x e. ~H ( ( S o. 0hop ) ` x ) = ( 0hop ` x ) ) ) |
13 |
8 11 12
|
mp2an |
|- ( ( S o. 0hop ) = 0hop <-> A. x e. ~H ( ( S o. 0hop ) ` x ) = ( 0hop ` x ) ) |
14 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
15 |
14
|
fveq2d |
|- ( x e. ~H -> ( S ` ( 0hop ` x ) ) = ( S ` 0h ) ) |
16 |
1
|
lnop0i |
|- ( S ` 0h ) = 0h |
17 |
15 16
|
eqtrdi |
|- ( x e. ~H -> ( S ` ( 0hop ` x ) ) = 0h ) |
18 |
1
|
lnopfi |
|- S : ~H --> ~H |
19 |
18 9
|
hocoi |
|- ( x e. ~H -> ( ( S o. 0hop ) ` x ) = ( S ` ( 0hop ` x ) ) ) |
20 |
17 19 14
|
3eqtr4d |
|- ( x e. ~H -> ( ( S o. 0hop ) ` x ) = ( 0hop ` x ) ) |
21 |
13 20
|
mprgbir |
|- ( S o. 0hop ) = 0hop |
22 |
3 21
|
eqtrdi |
|- ( T = 0hop -> ( S o. T ) = 0hop ) |
23 |
2
|
nmlnop0iHIL |
|- ( ( normop ` T ) = 0 <-> T = 0hop ) |
24 |
1 2
|
lnopcoi |
|- ( S o. T ) e. LinOp |
25 |
24
|
nmlnop0iHIL |
|- ( ( normop ` ( S o. T ) ) = 0 <-> ( S o. T ) = 0hop ) |
26 |
22 23 25
|
3imtr4i |
|- ( ( normop ` T ) = 0 -> ( normop ` ( S o. T ) ) = 0 ) |