Step |
Hyp |
Ref |
Expression |
1 |
|
lnopeq0.1 |
|- T e. LinOp |
2 |
1
|
lnopeq0lem2 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( ( T ` y ) .ih z ) = ( ( ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) + ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) ) / 4 ) ) |
3 |
2
|
adantl |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( T ` y ) .ih z ) = ( ( ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) + ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) ) / 4 ) ) |
4 |
|
hvaddcl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y +h z ) e. ~H ) |
5 |
|
fveq2 |
|- ( x = ( y +h z ) -> ( T ` x ) = ( T ` ( y +h z ) ) ) |
6 |
|
id |
|- ( x = ( y +h z ) -> x = ( y +h z ) ) |
7 |
5 6
|
oveq12d |
|- ( x = ( y +h z ) -> ( ( T ` x ) .ih x ) = ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) ) |
8 |
7
|
eqeq1d |
|- ( x = ( y +h z ) -> ( ( ( T ` x ) .ih x ) = 0 <-> ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) = 0 ) ) |
9 |
8
|
rspccva |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y +h z ) e. ~H ) -> ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) = 0 ) |
10 |
4 9
|
sylan2 |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) = 0 ) |
11 |
|
hvsubcl |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y -h z ) e. ~H ) |
12 |
|
fveq2 |
|- ( x = ( y -h z ) -> ( T ` x ) = ( T ` ( y -h z ) ) ) |
13 |
|
id |
|- ( x = ( y -h z ) -> x = ( y -h z ) ) |
14 |
12 13
|
oveq12d |
|- ( x = ( y -h z ) -> ( ( T ` x ) .ih x ) = ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) |
15 |
14
|
eqeq1d |
|- ( x = ( y -h z ) -> ( ( ( T ` x ) .ih x ) = 0 <-> ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) = 0 ) ) |
16 |
15
|
rspccva |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y -h z ) e. ~H ) -> ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) = 0 ) |
17 |
11 16
|
sylan2 |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) = 0 ) |
18 |
10 17
|
oveq12d |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) = ( 0 - 0 ) ) |
19 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
20 |
18 19
|
eqtrdi |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) = 0 ) |
21 |
|
ax-icn |
|- _i e. CC |
22 |
|
hvmulcl |
|- ( ( _i e. CC /\ z e. ~H ) -> ( _i .h z ) e. ~H ) |
23 |
21 22
|
mpan |
|- ( z e. ~H -> ( _i .h z ) e. ~H ) |
24 |
|
hvaddcl |
|- ( ( y e. ~H /\ ( _i .h z ) e. ~H ) -> ( y +h ( _i .h z ) ) e. ~H ) |
25 |
23 24
|
sylan2 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y +h ( _i .h z ) ) e. ~H ) |
26 |
|
fveq2 |
|- ( x = ( y +h ( _i .h z ) ) -> ( T ` x ) = ( T ` ( y +h ( _i .h z ) ) ) ) |
27 |
|
id |
|- ( x = ( y +h ( _i .h z ) ) -> x = ( y +h ( _i .h z ) ) ) |
28 |
26 27
|
oveq12d |
|- ( x = ( y +h ( _i .h z ) ) -> ( ( T ` x ) .ih x ) = ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) ) |
29 |
28
|
eqeq1d |
|- ( x = ( y +h ( _i .h z ) ) -> ( ( ( T ` x ) .ih x ) = 0 <-> ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) = 0 ) ) |
30 |
29
|
rspccva |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y +h ( _i .h z ) ) e. ~H ) -> ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) = 0 ) |
31 |
25 30
|
sylan2 |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) = 0 ) |
32 |
|
hvsubcl |
|- ( ( y e. ~H /\ ( _i .h z ) e. ~H ) -> ( y -h ( _i .h z ) ) e. ~H ) |
33 |
23 32
|
sylan2 |
|- ( ( y e. ~H /\ z e. ~H ) -> ( y -h ( _i .h z ) ) e. ~H ) |
34 |
|
fveq2 |
|- ( x = ( y -h ( _i .h z ) ) -> ( T ` x ) = ( T ` ( y -h ( _i .h z ) ) ) ) |
35 |
|
id |
|- ( x = ( y -h ( _i .h z ) ) -> x = ( y -h ( _i .h z ) ) ) |
36 |
34 35
|
oveq12d |
|- ( x = ( y -h ( _i .h z ) ) -> ( ( T ` x ) .ih x ) = ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) |
37 |
36
|
eqeq1d |
|- ( x = ( y -h ( _i .h z ) ) -> ( ( ( T ` x ) .ih x ) = 0 <-> ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) = 0 ) ) |
38 |
37
|
rspccva |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y -h ( _i .h z ) ) e. ~H ) -> ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) = 0 ) |
39 |
33 38
|
sylan2 |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) = 0 ) |
40 |
31 39
|
oveq12d |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) = ( 0 - 0 ) ) |
41 |
40 19
|
eqtrdi |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) = 0 ) |
42 |
41
|
oveq2d |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) = ( _i x. 0 ) ) |
43 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
44 |
42 43
|
eqtrdi |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) = 0 ) |
45 |
20 44
|
oveq12d |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) + ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) ) = ( 0 + 0 ) ) |
46 |
|
00id |
|- ( 0 + 0 ) = 0 |
47 |
45 46
|
eqtrdi |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) + ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) ) = 0 ) |
48 |
47
|
oveq1d |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) + ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) ) / 4 ) = ( 0 / 4 ) ) |
49 |
|
4cn |
|- 4 e. CC |
50 |
|
4ne0 |
|- 4 =/= 0 |
51 |
49 50
|
div0i |
|- ( 0 / 4 ) = 0 |
52 |
48 51
|
eqtrdi |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( ( ( ( T ` ( y +h z ) ) .ih ( y +h z ) ) - ( ( T ` ( y -h z ) ) .ih ( y -h z ) ) ) + ( _i x. ( ( ( T ` ( y +h ( _i .h z ) ) ) .ih ( y +h ( _i .h z ) ) ) - ( ( T ` ( y -h ( _i .h z ) ) ) .ih ( y -h ( _i .h z ) ) ) ) ) ) / 4 ) = 0 ) |
53 |
3 52
|
eqtrd |
|- ( ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 /\ ( y e. ~H /\ z e. ~H ) ) -> ( ( T ` y ) .ih z ) = 0 ) |
54 |
53
|
ralrimivva |
|- ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 -> A. y e. ~H A. z e. ~H ( ( T ` y ) .ih z ) = 0 ) |
55 |
1
|
lnopfi |
|- T : ~H --> ~H |
56 |
55
|
ho01i |
|- ( A. y e. ~H A. z e. ~H ( ( T ` y ) .ih z ) = 0 <-> T = 0hop ) |
57 |
54 56
|
sylib |
|- ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 -> T = 0hop ) |
58 |
|
fveq1 |
|- ( T = 0hop -> ( T ` x ) = ( 0hop ` x ) ) |
59 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
60 |
58 59
|
sylan9eq |
|- ( ( T = 0hop /\ x e. ~H ) -> ( T ` x ) = 0h ) |
61 |
60
|
oveq1d |
|- ( ( T = 0hop /\ x e. ~H ) -> ( ( T ` x ) .ih x ) = ( 0h .ih x ) ) |
62 |
|
hi01 |
|- ( x e. ~H -> ( 0h .ih x ) = 0 ) |
63 |
62
|
adantl |
|- ( ( T = 0hop /\ x e. ~H ) -> ( 0h .ih x ) = 0 ) |
64 |
61 63
|
eqtrd |
|- ( ( T = 0hop /\ x e. ~H ) -> ( ( T ` x ) .ih x ) = 0 ) |
65 |
64
|
ralrimiva |
|- ( T = 0hop -> A. x e. ~H ( ( T ` x ) .ih x ) = 0 ) |
66 |
57 65
|
impbii |
|- ( A. x e. ~H ( ( T ` x ) .ih x ) = 0 <-> T = 0hop ) |