| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnopeq0.1 |
|- T e. LinOp |
| 2 |
|
lnopeq0lem1.2 |
|- A e. ~H |
| 3 |
|
lnopeq0lem1.3 |
|- B e. ~H |
| 4 |
1
|
lnopfi |
|- T : ~H --> ~H |
| 5 |
4
|
ffvelcdmi |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 6 |
2 5
|
ax-mp |
|- ( T ` A ) e. ~H |
| 7 |
4
|
ffvelcdmi |
|- ( B e. ~H -> ( T ` B ) e. ~H ) |
| 8 |
3 7
|
ax-mp |
|- ( T ` B ) e. ~H |
| 9 |
6 3 8 2
|
polid2i |
|- ( ( T ` A ) .ih B ) = ( ( ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| 10 |
1
|
lnopaddi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |
| 11 |
2 3 10
|
mp2an |
|- ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) |
| 12 |
11
|
oveq1i |
|- ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) = ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) |
| 13 |
1
|
lnopsubi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) ) |
| 14 |
2 3 13
|
mp2an |
|- ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) |
| 15 |
14
|
oveq1i |
|- ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) = ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) |
| 16 |
12 15
|
oveq12i |
|- ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) = ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) |
| 17 |
|
ax-icn |
|- _i e. CC |
| 18 |
1
|
lnopaddmuli |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) |
| 19 |
17 2 3 18
|
mp3an |
|- ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) |
| 20 |
19
|
oveq1i |
|- ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) = ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) |
| 21 |
1
|
lnopsubmuli |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) |
| 22 |
17 2 3 21
|
mp3an |
|- ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) |
| 23 |
22
|
oveq1i |
|- ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) = ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) |
| 24 |
20 23
|
oveq12i |
|- ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) = ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) |
| 25 |
24
|
oveq2i |
|- ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) = ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) |
| 26 |
16 25
|
oveq12i |
|- ( ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) = ( ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) |
| 27 |
26
|
oveq1i |
|- ( ( ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) = ( ( ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| 28 |
9 27
|
eqtr4i |
|- ( ( T ` A ) .ih B ) = ( ( ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |