Step |
Hyp |
Ref |
Expression |
1 |
|
lnopeq0.1 |
|- T e. LinOp |
2 |
|
lnopeq0lem1.2 |
|- A e. ~H |
3 |
|
lnopeq0lem1.3 |
|- B e. ~H |
4 |
1
|
lnopfi |
|- T : ~H --> ~H |
5 |
4
|
ffvelrni |
|- ( A e. ~H -> ( T ` A ) e. ~H ) |
6 |
2 5
|
ax-mp |
|- ( T ` A ) e. ~H |
7 |
4
|
ffvelrni |
|- ( B e. ~H -> ( T ` B ) e. ~H ) |
8 |
3 7
|
ax-mp |
|- ( T ` B ) e. ~H |
9 |
6 3 8 2
|
polid2i |
|- ( ( T ` A ) .ih B ) = ( ( ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
10 |
1
|
lnopaddi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) ) |
11 |
2 3 10
|
mp2an |
|- ( T ` ( A +h B ) ) = ( ( T ` A ) +h ( T ` B ) ) |
12 |
11
|
oveq1i |
|- ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) = ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) |
13 |
1
|
lnopsubi |
|- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) ) |
14 |
2 3 13
|
mp2an |
|- ( T ` ( A -h B ) ) = ( ( T ` A ) -h ( T ` B ) ) |
15 |
14
|
oveq1i |
|- ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) = ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) |
16 |
12 15
|
oveq12i |
|- ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) = ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) |
17 |
|
ax-icn |
|- _i e. CC |
18 |
1
|
lnopaddmuli |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) ) |
19 |
17 2 3 18
|
mp3an |
|- ( T ` ( A +h ( _i .h B ) ) ) = ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) |
20 |
19
|
oveq1i |
|- ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) = ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) |
21 |
1
|
lnopsubmuli |
|- ( ( _i e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) ) |
22 |
17 2 3 21
|
mp3an |
|- ( T ` ( A -h ( _i .h B ) ) ) = ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) |
23 |
22
|
oveq1i |
|- ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) = ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) |
24 |
20 23
|
oveq12i |
|- ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) = ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) |
25 |
24
|
oveq2i |
|- ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) = ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) |
26 |
16 25
|
oveq12i |
|- ( ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) = ( ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) |
27 |
26
|
oveq1i |
|- ( ( ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) = ( ( ( ( ( ( T ` A ) +h ( T ` B ) ) .ih ( A +h B ) ) - ( ( ( T ` A ) -h ( T ` B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( ( T ` A ) +h ( _i .h ( T ` B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( ( T ` A ) -h ( _i .h ( T ` B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
28 |
9 27
|
eqtr4i |
|- ( ( T ` A ) .ih B ) = ( ( ( ( ( T ` ( A +h B ) ) .ih ( A +h B ) ) - ( ( T ` ( A -h B ) ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( T ` ( A +h ( _i .h B ) ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( T ` ( A -h ( _i .h B ) ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |