| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							lnopeq.1 | 
							 |-  T e. LinOp  | 
						
						
							| 2 | 
							
								
							 | 
							lnopeq.2 | 
							 |-  U e. LinOp  | 
						
						
							| 3 | 
							
								1
							 | 
							lnopfi | 
							 |-  T : ~H --> ~H  | 
						
						
							| 4 | 
							
								3
							 | 
							ffvelcdmi | 
							 |-  ( x e. ~H -> ( T ` x ) e. ~H )  | 
						
						
							| 5 | 
							
								
							 | 
							hicl | 
							 |-  ( ( ( T ` x ) e. ~H /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. CC )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpancom | 
							 |-  ( x e. ~H -> ( ( T ` x ) .ih x ) e. CC )  | 
						
						
							| 7 | 
							
								2
							 | 
							lnopfi | 
							 |-  U : ~H --> ~H  | 
						
						
							| 8 | 
							
								7
							 | 
							ffvelcdmi | 
							 |-  ( x e. ~H -> ( U ` x ) e. ~H )  | 
						
						
							| 9 | 
							
								
							 | 
							hicl | 
							 |-  ( ( ( U ` x ) e. ~H /\ x e. ~H ) -> ( ( U ` x ) .ih x ) e. CC )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							mpancom | 
							 |-  ( x e. ~H -> ( ( U ` x ) .ih x ) e. CC )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							subeq0ad | 
							 |-  ( x e. ~H -> ( ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) = 0 <-> ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							hodval | 
							 |-  ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( T -op U ) ` x ) = ( ( T ` x ) -h ( U ` x ) ) )  | 
						
						
							| 13 | 
							
								3 7 12
							 | 
							mp3an12 | 
							 |-  ( x e. ~H -> ( ( T -op U ) ` x ) = ( ( T ` x ) -h ( U ` x ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							 |-  ( x e. ~H -> ( ( ( T -op U ) ` x ) .ih x ) = ( ( ( T ` x ) -h ( U ` x ) ) .ih x ) )  | 
						
						
							| 15 | 
							
								
							 | 
							id | 
							 |-  ( x e. ~H -> x e. ~H )  | 
						
						
							| 16 | 
							
								
							 | 
							his2sub | 
							 |-  ( ( ( T ` x ) e. ~H /\ ( U ` x ) e. ~H /\ x e. ~H ) -> ( ( ( T ` x ) -h ( U ` x ) ) .ih x ) = ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) )  | 
						
						
							| 17 | 
							
								4 8 15 16
							 | 
							syl3anc | 
							 |-  ( x e. ~H -> ( ( ( T ` x ) -h ( U ` x ) ) .ih x ) = ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							eqtr2d | 
							 |-  ( x e. ~H -> ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) = ( ( ( T -op U ) ` x ) .ih x ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqeq1d | 
							 |-  ( x e. ~H -> ( ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) = 0 <-> ( ( ( T -op U ) ` x ) .ih x ) = 0 ) )  | 
						
						
							| 20 | 
							
								11 19
							 | 
							bitr3d | 
							 |-  ( x e. ~H -> ( ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) <-> ( ( ( T -op U ) ` x ) .ih x ) = 0 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ralbiia | 
							 |-  ( A. x e. ~H ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) <-> A. x e. ~H ( ( ( T -op U ) ` x ) .ih x ) = 0 )  | 
						
						
							| 22 | 
							
								1 2
							 | 
							lnophdi | 
							 |-  ( T -op U ) e. LinOp  | 
						
						
							| 23 | 
							
								22
							 | 
							lnopeq0i | 
							 |-  ( A. x e. ~H ( ( ( T -op U ) ` x ) .ih x ) = 0 <-> ( T -op U ) = 0hop )  | 
						
						
							| 24 | 
							
								3 7
							 | 
							hosubeq0i | 
							 |-  ( ( T -op U ) = 0hop <-> T = U )  | 
						
						
							| 25 | 
							
								21 23 24
							 | 
							3bitri | 
							 |-  ( A. x e. ~H ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) <-> T = U )  |