Step |
Hyp |
Ref |
Expression |
1 |
|
lnopeq.1 |
|- T e. LinOp |
2 |
|
lnopeq.2 |
|- U e. LinOp |
3 |
1
|
lnopfi |
|- T : ~H --> ~H |
4 |
3
|
ffvelrni |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
5 |
|
hicl |
|- ( ( ( T ` x ) e. ~H /\ x e. ~H ) -> ( ( T ` x ) .ih x ) e. CC ) |
6 |
4 5
|
mpancom |
|- ( x e. ~H -> ( ( T ` x ) .ih x ) e. CC ) |
7 |
2
|
lnopfi |
|- U : ~H --> ~H |
8 |
7
|
ffvelrni |
|- ( x e. ~H -> ( U ` x ) e. ~H ) |
9 |
|
hicl |
|- ( ( ( U ` x ) e. ~H /\ x e. ~H ) -> ( ( U ` x ) .ih x ) e. CC ) |
10 |
8 9
|
mpancom |
|- ( x e. ~H -> ( ( U ` x ) .ih x ) e. CC ) |
11 |
6 10
|
subeq0ad |
|- ( x e. ~H -> ( ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) = 0 <-> ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) ) ) |
12 |
|
hodval |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( T -op U ) ` x ) = ( ( T ` x ) -h ( U ` x ) ) ) |
13 |
3 7 12
|
mp3an12 |
|- ( x e. ~H -> ( ( T -op U ) ` x ) = ( ( T ` x ) -h ( U ` x ) ) ) |
14 |
13
|
oveq1d |
|- ( x e. ~H -> ( ( ( T -op U ) ` x ) .ih x ) = ( ( ( T ` x ) -h ( U ` x ) ) .ih x ) ) |
15 |
|
id |
|- ( x e. ~H -> x e. ~H ) |
16 |
|
his2sub |
|- ( ( ( T ` x ) e. ~H /\ ( U ` x ) e. ~H /\ x e. ~H ) -> ( ( ( T ` x ) -h ( U ` x ) ) .ih x ) = ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) ) |
17 |
4 8 15 16
|
syl3anc |
|- ( x e. ~H -> ( ( ( T ` x ) -h ( U ` x ) ) .ih x ) = ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) ) |
18 |
14 17
|
eqtr2d |
|- ( x e. ~H -> ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) = ( ( ( T -op U ) ` x ) .ih x ) ) |
19 |
18
|
eqeq1d |
|- ( x e. ~H -> ( ( ( ( T ` x ) .ih x ) - ( ( U ` x ) .ih x ) ) = 0 <-> ( ( ( T -op U ) ` x ) .ih x ) = 0 ) ) |
20 |
11 19
|
bitr3d |
|- ( x e. ~H -> ( ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) <-> ( ( ( T -op U ) ` x ) .ih x ) = 0 ) ) |
21 |
20
|
ralbiia |
|- ( A. x e. ~H ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) <-> A. x e. ~H ( ( ( T -op U ) ` x ) .ih x ) = 0 ) |
22 |
1 2
|
lnophdi |
|- ( T -op U ) e. LinOp |
23 |
22
|
lnopeq0i |
|- ( A. x e. ~H ( ( ( T -op U ) ` x ) .ih x ) = 0 <-> ( T -op U ) = 0hop ) |
24 |
3 7
|
hosubeq0i |
|- ( ( T -op U ) = 0hop <-> T = U ) |
25 |
21 23 24
|
3bitri |
|- ( A. x e. ~H ( ( T ` x ) .ih x ) = ( ( U ` x ) .ih x ) <-> T = U ) |