Metamath Proof Explorer


Theorem lnophdi

Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1
|- S e. LinOp
lnopco.2
|- T e. LinOp
Assertion lnophdi
|- ( S -op T ) e. LinOp

Proof

Step Hyp Ref Expression
1 lnopco.1
 |-  S e. LinOp
2 lnopco.2
 |-  T e. LinOp
3 1 lnopfi
 |-  S : ~H --> ~H
4 2 lnopfi
 |-  T : ~H --> ~H
5 3 4 honegsubi
 |-  ( S +op ( -u 1 .op T ) ) = ( S -op T )
6 neg1cn
 |-  -u 1 e. CC
7 2 lnopmi
 |-  ( -u 1 e. CC -> ( -u 1 .op T ) e. LinOp )
8 6 7 ax-mp
 |-  ( -u 1 .op T ) e. LinOp
9 1 8 lnophsi
 |-  ( S +op ( -u 1 .op T ) ) e. LinOp
10 5 9 eqeltrri
 |-  ( S -op T ) e. LinOp